
35
01

24
30

 0
1

Modicon M340 with Unity Pro
Serial Link
User Manual
November 2007 eng

2 35012430 01 November 2007

Table of Contents
Safety Information .7

About the Book .9

Part I Introduction to Modbus and Character Mode
Communications . 11
At a Glance . 11

Chapter 1 Introduction to Modbus and Character Mode Communications
 .13
Introduction to Modbus and Character Mode Communications 13

Part II Hardware Installation for Modbus and Character Mode
Communications . 15
At a Glance . 15

Chapter 2 Introduction to Serial Communications on the BMX P34 1000/
2010/2020 Processors .17
Introduction to Serial Communications on the BMX P34 1000/2010/2020
processors. 17

Chapter 3 Serial Communications Architectures23
At a Glance . 23
Modbus line adaptation and polarization. 24
Connecting Modbus Devices. 26
Connecting Data Terminal Equipment (D.T.E.). 29
Connecting Data Circuit-Terminating Equipment (DCTE). 31
Wiring Installation . 34

Part III Software Implementation of Modbus and Character Mode
Communications . 37
At a Glance . 37

Chapter 4 Installation Methodology .39
35012430 01 November 2007 3

Introduction to the Installation Phase. 39

Chapter 5 Software Implementation of Modbus Communication. 43
At a Glance . 43

5.1 General . 44
At a Glance . 44
About Modbus . 45
Performance . 46
How to Access the Serial Link Parameters for the BMX P34 1000/2010/2020
Processors . 48

5.2 Modbus Communication Configuration . 52
At a Glance . 52
Modbus Communication Configuration Screen . 53
Accessible Modbus Functions . 55
Default Values for Modbus Communication Parameters 56
Configuration Screen for Modbus Communication . 57
Application-linked Modbus Parameters . 59
Transmission-linked Modbus Parameters . 61
Signal and Physical Line Parameters in Modbus. 63

5.3 Modbus Communication Programming . 65
At a Glance . 65
Services Supported by a Modbus Link Slave Processor 66
Services Supported by a Modbus Link Master Processor 67

5.4 Debugging Modbus Communication . 74
Modbus Communication Debug Screen . 74

Chapter 6 Software Implementation of Communication Using Character
Mode . 77
At a Glance . 77

6.1 General . 78
At a Glance . 78
About Character Mode Communication. 79
Performance . 80

6.2 Character Mode Communication Configuration. 82
At a Glance . 82
Character Mode Communication Configuration Screen 83
Accessible Functions in Character Mode. 85
Default Values for Character Mode Communication Parameters 86
Transmission Parameters in Character Mode . 87
Message End Parameters in Character Mode. 89
Signal and Physical Line Parameters in Character Mode 91

6.3 Character Mode Communication Programming. 92
Character Mode Communication Functions. 92

6.4 Debugging Character Mode communication . 98
At a Glance . 98
Debug Screen for Character Mode communication. 99
4 35012430 01 November 2007

Debugging Parameters in Character Mode. 101

Chapter 7 Language Objects of Modbus and Character Mode
Communications. .103
At a Glance . 103

7.1 Language Objects and IODDTs of Modbus and Character Mode Communications
 . 104
At a Glance . 104
Introduction to the Language Objects for Modbus and Character Mode
Communications . 105
Implicit Exchange Language Objects Associated with the Application-Specific
Function . 106
Explicit Exchange Language Objects Associated with the Application-Specific
Function . 107
Management of Exchanges and Reports with Explicit Objects 109

7.2 General Language Objects and IODDTs for All Communication Protocols . . . 112
At a Glance . 112
Details of IODDT Implicit Exchange Objects of Type T_COM_STS_GEN 113
Details of IODDT Explicit Exchange Objects of Type T_COM_STS_GEN 114

7.3 Language Objects and IODDTs Associated with Modbus Communication . . . 116
At a Glance . 116
Details concerning Explicit Exchange Language Objects for a Modbus Function
 . 117
Details of the IODDT Implicit Exchange Objects of type T_COM_MB_BMX . . 118
Details of the IODDT Explicit Exchange Objects of type T_COM_MB_BMX . . 119
Details of language objects associated with configuration Modbus mode 122

7.4 Language Objects and IODDTs associated with Character Mode Communication
 . 124
At a Glance . 124
Details concerning Explicit Exchange Language Objects for Communication in
Character Mode. 125
Details of IODDT Implicit Exchange Objects of Type T_COM_CHAR_BMX . . 126
Details of IODDT Explicit Exchange Objects of Type T_COM_CHAR_BMX . . 127
Details of language objects associated with configuration in Character mode . 130

7.5 The IODDT Type T_GEN_MOD Applicable to All Modules 132
Details of the Language Objects of the IODDT of Type T_GEN_MOD. 132

Chapter 8 Dynamic Protocol Switching .135
Changing Protocol. 135

Part IV Quick start : example of Serial link implementation . . 139
At a glance . 139

Chapter 9 Description of the application .141
Overview of the application . 141
35012430 01 November 2007 5

Chapter 10 Installing the application using Unity Pro 145
At a glance. 145

10.1 Presentation of the solution used. 146
The different steps in the process using Unity Pro . 146

10.2 Developping the application. 147
At a glance. 147
Creating the project . 148
Declaration of variables . 152
Using a modem . 157
Procedure for programming . 159
Programming structure . 161
Programming . 164

Chapter 11 Starting the Application . 173
Execution of Application in Standard Mode . 173

Index .177
6 35012430 01 November 2007

§

Safety Information
Important Information

NOTICE Read these instructions carefully, and look at the equipment to become familiar with
the device before trying to install, operate, or maintain it. The following special
messages may appear throughout this documentation or on the equipment to warn
of potential hazards or to call attention to information that clarifies or simplifies a
procedure.

The addition of this symbol to a Danger or Warning safety label indicates
that an electrical hazard exists, which will result in personal injury if the
instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal
injury hazards. Obey all safety messages that follow this symbol to avoid
possible injury or death.

DANGER indicates an imminently hazardous situation, which, if not avoided, will
result in death or serious injury.

DANGER

WARNING indicates a potentially hazardous situation, which, if not avoided, can result
in death, serious injury, or equipment damage.

WARNING

CAUTION indicates a potentially hazardous situation, which, if not avoided, can result
in injury or equipment damage.

CAUTION
35012430 01 November 2007 7

Safety Information
PLEASE NOTE Electrical equipment should be installed, operated, serviced, and maintained only by
qualified personnel. No responsibility is assumed by Schneider Electric for any
consequences arising out of the use of this material.

© 2007 Schneider Electric. All Rights Reserved.
8 35012430 01 November 2007

About the Book
At a Glance

Document Scope This manual describes the principle for hardware and software implementation of
Character Mode and Modbus communication for BMX P34 1000/2010/2020
processors.

Validity Note The data and illustrations found in this documentation are not binding. We reserve
the right to modify our products in line with our policy of continuous product
development.

The information in this document is subject to change without notice and should not
be construed as a commitment by Schneider Electric.

Related
Documents

Product Related
Warnings

Title of Documentation Reference Number

Communication architectures and services Included in the
documentation CD-
ROM

UNINTENDED EQUIPMENT OPERATION

WARNING

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

The application of this product requires expertise in the design and programming
of control systems. Only persons with such expertise should be allowed to
program, install, alter, and apply this product.
35012430 01 November 2007 9

About the Book
Schneider Electric assumes no responsibility for any errors that may appear in this
document. If you have any suggestions for improvements or amendments or have
found errors in this publication, please notify us.

No part of this document may be reproduced in any form or by any means, electronic
or mechanical, including photocopying, without the express written permission of
Schneider Electric.

All pertinent state, regional, and local safety regulations must be observed when
installing and using this product.

For safety reasons and to ensure compliance with documented system data, only
the manufacturer is authorized to perform repairs to components.

When controllers are used for applications with technical safety requirements,
please follow the relevant instructions.

Failure to observe this warning about the product can result in injury or equipment
damage.

User Comments We welcome your comments about this document. You can reach us by e-mail at
techpub@schneider-electric.com
10 35012430 01 November 2007

35012430 01 November 2007
I

Introduction to Modbus and
Character Mode Communications
At a Glance

In This Section This section provides an introduction to Modbus and Character Mode
communications.

What's in this
Part?

This part contains the following chapters:

Chapter Chapter Name Page

1 Introduction to Modbus and Character Mode Communications 13
11

Introduction to Modbus and Character Mode
12 35012430 01 November 2007

35012430 01 November 2007
1

Introduction to Modbus and
Character Mode Communications
Introduction to Modbus and Character Mode Communications

General The serial link for BMX P34 1000/2010/2020 processors supports two
communication protocols:

Modbus
Character Mode
13

Introduction
Modbus Protocol Modbus is a standard protocol with the following properties:

Establishes client/server communication between different modules within a bus
or serial link. The client is identified by the master and the slave modules
represent the servers.
Is based on a mode of data exchange composed of requests and responses
offering services via different function codes.
Establishes a means of exchanging frames from Modbus-type applications in two
types of code:

RTU
ASCII

The exchange management procedure is as follows:

Only one device may send data on the bus.
Exchanges are managed by the master. Only the master may initiate exchanges.
Slaves may not send messages without first being invited to do so.
In the event of an invalid exchange, the master repeats the request. The slave to
which the request is made is declared absent by the master if it fails to respond
within a given timescale.
If the slave does not understand or cannot process the request, it sends an
exception response to the master. In this case, the master may or may not repeat
the request.

Two types of dialogue are possible between master and slave(s):

The master sends a request to the slave and awaits its response.
The master sends a request to all the slaves without awaiting a reply (the general
broadcast principle).

Character Mode
Communication

Character mode is a point-to-point mode of data exchange between two entities.
Unlike Modbus protocol, it does not establish hierarchically structured serial link
communications or offer services via function codes.

Character Mode is asynchronous. Each item of textual information is sent or
received character by character at irregular time intervals. The time taken by the
exchanges can be determined from the following properties:

One or two end-of-frame characters.
Timeout.
Number of characters.
14 35012430 01 November 2007

35012430 01 November 2007
II

Hardware Installation for Modbus
and Character Mode
Communications
At a Glance

In This Section This section provides an introduction to hardware installation for Modbus and
Character Mode communications.

What's in this
Part?

This part contains the following chapters:

Chapter Chapter Name Page

2 Introduction to Serial Communications on the BMX P34 1000/
2010/2020 Processors

17

3 Serial Communications Architectures 23
15

Hardware Installation for Serial Communications
16 35012430 01 November 2007

35012430 01 November 2007
2

Introduction to Serial
Communications on the
BMX P34 1000/2010/2020
Processors
Introduction to Serial Communications on the BMX P34 1000/2010/2020
processors.

General The BMX P34 1000/2010/2020 processors enable communication via a serial link.

All these processors have an integrated communication channel dedicated to serial
communications.

Introduction to
the Processors

The illustration below shows the physical characteristics of the BMX P34 1000/
2010/2020 processors:

The BMX P34 1000/2010/2020 processors are composed of the following elements:

Address Description

1 Processor status LEDs on the front.

2 Integrated channel dedicated to the serial link

3 Serial port identification ring (black).

2

1

3

BMX P34 2010 Processor

2

1

3

BMX P34 1000/2020 Processors
17

Serial Communications on the BMX P34 1000/2010/2020 Processors
Visual
Diagnostic of
Serial
Communication

The status of the serial communication is indicated by a yellow SER COM LED on
the front of the BMX P34 1000/2010/2020 processors:

LED flashing: serial communication is in progress.
LED off: Serial communication is not in progress.
18 35012430 01 November 2007

Serial Communications on the BMX P34 1000/2010/2020
Introduction to
the Serial Port

The properties of the serial communication channel for the BMX P34 1000/2010/
2020 processors are outlined in the table below:

The illustration below shows the RJ45 serial port on the BMX P34 1000/2010/2020
processors:

The illustration below shows the pin assignment for the serial port on the
BMX P34 1000/2010/2020 processors:

The RJ45 connector has eight pins. The pins used vary according to the physical
link used.

The pins used by the RS 232 serial link are as follows:

Pin 1: RXD signal
Pin 2: TXD signal

Feature Description

Channel number Channel 0

Protocols supported Modbus protocol (ASCII and RTU)
Character Mode protocol

Connection RJ45 female connector

Physical link Non-isolated RS 485 2-wire serial link
Non-isolated RS 232 serial link

1
2
3
4
5
6
7
8

1 RXD
TXD
RTS

CTS
Power Supply
Common

2
3
4
5
6
7
8

Shielding

D1
D0
35012430 01 November 2007 19

Serial Communications on the BMX P34 1000/2010/2020 Processors
Pin 3: RTS signal
Pin 6: CTS signal
Pin 8: Potential serial link grounding (0 V)

The pins used by the RS 485 serial link are as follows:

Pin 4: D1 signal
Pin 5: D0 signal

Pins 7 is used solely to supply power to human-machine interfaces or small devices
via the serial link cable:

Pin 7: Serial link power supply: 5VDC/190mA

Detailed characteristics

DC characteristics:

Maximum stabilized power consumption: 190 mA,
Minimum voltage on CPU connector for 190 mA: 4.9 V,
Maximum voltage on CPU connector for 190mA: 5.25 V,
Maximum voltage on CPU connector with no load: 5.5 V.

AC characteristics:

capacitor charge: (on 5 V)
maximum 1 μF ceramic capacitator
and 10 μF tantalum (Z=2.3u)

pump charge startup: (on 5 V)
4 x 1 μF ceramic capacitator
and 2 x 10 μF tantalum

Note: The four-wire RS 232, two-wire RS 485 and two-wire RS 485 with power
supply all use the same male connector, the RJ45. Only the signal cabling is
different.
20 35012430 01 November 2007

Serial Communications on the BMX P34 1000/2010/2020
Modbus Line
Electrical
Characteristics

RS232 and RS485 lines are not isolated.

In case of non equipotential earth between connected equipments (cables equal or
longer than 30 m), it is necessary to use a TWDXCAISO isolator module in RS485
mode.

RS485 line polarisation is integrated into the PLC and automatically enabled or
disabled by the system according to the configuration chosen in the Unity Pro
screen:

Modbus master : the line polarisation is enabled.
Modbus slave : the line polarization is disabled.
Character mode : the line polarization is disabled.

The polarisation is not affected by a dynamic protocol switching.The polarization
resistors value is 560 ohms.

In RS232 mode no polarization is required.

There is no built in line termination.
35012430 01 November 2007 21

Serial Communications on the BMX P34 1000/2010/2020 Processors
22 35012430 01 November 2007

35012430 01 November 2007
3

Serial Communications
Architectures
At a Glance

Subject of this
Chapter

This chapter provides an introduction to architectures that use serial communication
on the BMX P34 1000/2010/2020 processors, as well as the wiring to be installed.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Modbus line adaptation and polarization 24

Connecting Modbus Devices 26

Connecting Data Terminal Equipment (D.T.E.) 29

Connecting Data Circuit-Terminating Equipment (DCTE) 31

Wiring Installation 34
23

Introduction to Serial Communication Architectures
Modbus line adaptation and polarization

Overview A multi-point Modbus network must have line adaptation and polarization.

Line adaptation line adaptation consist of two 120 Ω resistor and 1 nF capacitor, placed at each end
of the network (VW3 A8 306RC or VW3 A8 306 DRC). Don’t place line adaptation
at the end of a derivation cable.

GR 5 V

0 V

120 Ω

1 nF

120 Ω

1 nF

R G R G

Master

Slave 1 Slave n

D1

D0
Common

Rp
Rp
24 35012430 01 November 2007

Introduction to Serial Communication Architectures
Line polarization On Modbus line, polarization is needed for M340. It is automatically driven by M340
CPUs (see chapter above). If the M340 CPU is used as a slave on Modbus the
polarization must be implemented by two 450 to 650 Ω resistors (Rp) connected on
the RS485 balanced pair (if not done on master):

a pull-up resistor to a 5 V voltage on the D1 circuit,
a pull-down resistor to the common circuit on D0 circuit.

For an example, see the multipoint example Connecting non-serial-Link-powered
Modbus devices (see Connecting Non-Serial-Link-Powered Modbus Devices,
p. 27) below.
35012430 01 November 2007 25

Introduction to Serial Communication Architectures
Connecting Modbus Devices

General The pages that follow present two examples of Modbus device connection and one
Modbus serial link architecture.

Connecting
Serial-Link-
Powered
Modbus Devices

The illustration below shows how a BMX P34 2010 processor is connected to an
XBT N200 console powered by the Modbus serial link:

The devices are configured as follows:

The BMX P34 2010 processor is configured as a slave,
The XBT N200 human-machine interface is configured as a master.

The XBT-Z9980 cable has the following properties:

Connection: 2 male RJ45 connectors
Wiring: 2 wires for the RS 485 physical line and 2 for the serial link power supply.

BMX P34 2010 Processor

XBT-Z9980 Cable

XBT N200 Console
26 35012430 01 November 2007

Introduction to Serial Communication Architectures
Connecting Non-
Serial-Link-
Powered
Modbus Devices

This architecture consists of the following elements:

A BMX P34 2010 processor configured as a master,
An XPSMC16 security controller is configured as a slave.

The illustration below shows how a BMX P34 2010 processor is connected to an
XPSMC16 security controller:

The devices are configured as follows:

The BMX P34 2010 processor is configured as a master,
The XPSMC16 security controller is configured as a slave.

The VW3 A8 306 R30 cable has the following properties:

Connection: 2 male RJ45 connectors
Wiring: 2 wires for the RS 485 physical line

BMX P34 2010 Processor

VW3 A8 306 R30 Cable

XPSMC16 Security Controller
35012430 01 November 2007 27

Introduction to Serial Communication Architectures
Modbus Serial
Link Architecture

The Modbus serial link architecture consists of the following elements:

A BMX P34 2010 processor, configured as a master.
An XPSMC16 security controller, configured as a slave.
A TWDXCAISO isolated splitter block.
An LU9 GC3 splitter block.
Two ATV31 drives, configured as slaves.

The diagram below represents the serial link architecture described above:

1 BMX P34 2010 Processor
2 XBT-Z9980 Cable
3 TWDXCAISO isolated splitter block
4 VW3 A8 306 R30 Cable
5 ATV31 Drive
6 XPSMC16 security controller
7 LU9 GC3 splitter block
8 TSXCSAx00 Cable
9 VW3 A8 306 R Cable

1

2

3

5

6

4

7

ATV31_V1_1 ATV31_V1_1

8

4

9
28 35012430 01 November 2007

Introduction to Serial Communication Architectures
Connecting Data Terminal Equipment (D.T.E.)

General Data terminal equipment is the term used to describe devices such as:

Common peripherals (printer, keyboard-screen, workshop terminal, etc.)
Specialized peripherals (barcode readers, etc.)
PCs

All data terminal equipment is connected to a BMX P34 1000/2010/2020 processor
by a serial cross cable using the RS 232 physical link.

Connecting Data
Terminal
Equipment

The illustration below shows how a printer is connected to a BMX P34 2010
processor:

The communication protocol used is Character Mode.

Note: Only one item of data terminal equipment may be connected to each
BMX P34 1000/2010/2020 processor.

BMX P34 2010 Processor

TCS MCN 3M4F3C2 cable
35012430 01 November 2007 29

Introduction to Serial Communication Architectures
RS 232 serial
cross cable

The TCS MCN 3M4F3C2 serial cross cable has two connectors:

RJ45 male
Nine-pin SUB-D female

The illustration below shows the pin assignment for a TCS MCN 3M4F3C2 serial
cross cable:

Connecting
Cables and
Accessories

The table below shows the product references of the cables and adapters to be used
according to the serial connector used by the data terminal equipment:

RJ45 male connector
1 RXD

TXD
RTS

CTS

Ground

2
3
4
5
6
7
8

Shielding

9-pin SUB-D female connector

RXD
TXD

RTS
CTS

2
3
4
5
6
7
8

Shielding

Ground

9

1

Serial Connector for Data Terminal
Equipment

Wiring

Nine-pin SUB-D male connector TCS MCN 3M4F3C2 cable

25-pin SUB-D male connector TCS MCN 3M4F3C2 cable
TSX CTC 07 Adapter

25-pin SUB-D female connector TCS MCN 3M4F3C2 cable
TSX CTC 10 Adapter
30 35012430 01 November 2007

Introduction to Serial Communication Architectures
Connecting Data Circuit-Terminating Equipment (DCTE)

General Data circuit-terminating equipment (DCTE) is the term used to describe devices
such as modems.

All data circuit-terminating equipment is connected to a BMX P34 1000/2010/2020
processor by serial direct cable using the RS 232 physical link.

Modem
Characteristics

Should you wish to connect a modem to the serial port of a BMX P34 1000/2010/
2020 processor, the modem must have the following characteristics:

Support 10 or 11 bits per character if the terminal port is used in Modbus protocol:
7 or 8 data bits
1 or 2 stop bits
Odd, even or no parity

Operate without a data carrier check.
Accept an incoming telephone call while characters arrive at its RS 232 serial port
(if a modem/telephone network is used in response mode on a terminal port
configured in Modbus Master mode).

Note: You are advised to check with your dealer that the modem you plan to use
has the above-mentioned characteristics.
35012430 01 November 2007 31

Introduction to Serial Communication Architectures
Connecting Data
Circuit-
Terminating
Equipment

The illustration below shows how a modem is connected to a BMX P34 2010
processor:

RS 232 Serial
Direct Cable

The TCS MCN 3M4M3S2 serial direct cable has two connectors:

RJ45 male
Nine-pin SUB-D male

The illustration below shows the pin assignment for a TCS MCN 3M4M3S2 serial
direct cable:

Note: In Modbus protocol, the waiting time must be between 100 and 250 ms.

BMX P34 2010 Processor

Modem
TCS MCN 3M4M3S2 cableSR2 MOD 01

SR2COM01
COM-M

STATUS

12-24 V DC
Telemecanique

RJ45 male connector
1 RXD

TXD
RTS

CTS

Ground

2
3
4
5
6
7
8

Shielding

9-pin SUB-D male connector

RXD
TXD

RTS
CTS

2
3
4
5
6
7
8

Shielding

Ground

9

1

32 35012430 01 November 2007

Introduction to Serial Communication Architectures
Connecting
Cables and
Accessories

The table below shows the product references of the cables and adapters to be used
according to the serial connector used by the data circuit-terminating equipment:

Serial Connector for Data Circuit-
Terminating Equipment

Wiring

Nine-pin SUB-D female connector TCS MCN 3M4M3S2 cable

25-pin SUB-D female connector TCS MCN 3M4M3S2 cable
TSX CTC 09 Adapter
35012430 01 November 2007 33

Introduction to Serial Communication Architectures
Wiring Installation

General In order to set up a serial link on a BMX P34 1000/2010/2020 processor, several
cables and accessories are required.

Cables The table below shows the available cables that are compatible with serial
communication on BMX P34 1000/2010/2020 processors:

Designation Length Characteristics Product reference

Two-wire RS 485 cable 1 m One RJ45 male connector
One nine-pin SUB-D male
connector

VW3 A58 306 R10

Two-wire RS 485 cable 3 m One RJ45 male connector
One nine-pin SUB-D male
connector

VW3 A58 306 R30

Two-wire RS 485 cable 3 m One RJ45 male connector
One bare end

VW3 A8 306 D30

Two-wire RS 485 cable 0.3 m Two RJ45 male connectors VW3 A8 306 R03

Two-wire RS 485 cable 1 m Two RJ45 male connectors VW3 A8 306 R10

Two-wire RS 485 cable 3 m Two RJ45 male connectors VW3 A8 306 R30

Two-wire RS 485 cable 3 m One RJ45 male connector
One fifteen-pin SUB-D
male connector

VW3 A8 306

RS 485 cable for serial-link-
powered devices

3 m Two RJ45 male connectors XBT-Z9980

RS 485 adapter for non-
standard devices

3 m One RJ45 male connector
One 25-pin SUB-D female
connector

XBT-Z938

Two-wire RS 485 double
shielded twisted pair cable

100 m Two bare ends TSX CSA 100

Two-wire RS 485 double
shielded twisted pair cable

200 m Two bare ends TSX CSA 200

Two-wire RS 485 double
shielded twisted pair cable

500 m Two bare ends TSX CSA 500

Four-wire RS 232 cable for
data terminal equipment

3 m One RJ45 male connector
One nine-pin SUB-D
female connector

TCS MCN 3M4F3C2

Four-wire RS 232 cable for
data circuit-terminating
equipment (DCTE)

3 m One RJ45 male connector
One nine-pin SUB-D male
connector

TCS MCN 3M4M3S2
34 35012430 01 November 2007

Introduction to Serial Communication Architectures
Connecting
Accessories

The table below shows the available connecting accessories that are compatible
with serial communication on BMX P34 1000/2010/2020 processors:

Designation Characteristics Product
reference

Modbus splitter block Ten RJ45 connectors
One screw terminal block

LU9 GC3

Isolated Modbus splitter block Two RJ45 connectors
One screw terminal block

TWDXCAISO

Modbus splitter block Three RJ45 connectors TWDXCAT3RJ

Modbus branch T-connector Two RJ45 connectors
On-board 0.3 m cable with
RJ45 connector at end

VW3 A8 306 TF0
3

Modbus tap T-connector Two RJ45 connectors
On-board 1 m cable with RJ45
connector at end

VW3 A8 306 TF1
0

RC line-end adaptation for RJ45
connectors

Resistance of 120 Ω

Capacity of 1 nF

VW3 A8 306 RC

RC line-end adaptation for screw
terminal block

Resistance of 120 Ω

Capacity of 1 nF

VW3 A8 306 DR
C

Adapter for non-standard devices Two 25-pin SUB-D male
connectors
For XBT G••• devices.

XBT ZG999

Adapter for non-standard devices One 25-pin SUB-D male
connector
One nine-pin SUB-D male
connector
For XBT G••• devices

XBT ZG909

Branching device Three screw terminal blocks
RC line end adaptation

TSX SCA 50

Subscriber socket One fifteen-pin SUB-D male
connector
Two screw terminal blocks
RC line end adaptation

TSX SCA 62

Adapter for data terminal equipment One nine-pin SUB-D male
connector
One 25-pin SUB-D female
connector

TSX CTC 07
35012430 01 November 2007 35

Introduction to Serial Communication Architectures
XBT Z998 and
XBT Z938 Cables

The XBT Z998 cable consists of a two-wire RS 485 link and a protected two-wire
5 VDC/190 mA power supply. This cable is used to link devices powered by the
Modbus serial link. The devices that may be connected using this cable are the
graphical user interface terminals with the following product references:

XBT N200
XBT N400
XBT R400

The XBT Z938 cable consists of a two-wire RS 485 link. This cable can be used to
connect the following graphical user interface terminals:

XBT N410
XBT N401
XBT NU400
XBT R410
XBT R411
XBT G•••• with an XBT ZG999 adapter
XBT GT•••• with an XBT ZG909 adapter

Adapter for data terminal equipment One nine-pin SUB-D male
connector
One 25-pin SUB-D male
connector

TSX CTC 10

Adapter for data circuit-terminating
equipment (DCTE)

One nine-pin SUB-D female
connector
One 25-pin SUB-D male
connector

TSX CTC 09

Note: This list of cables and accessories is not exhaustive.

Designation Characteristics Product
reference
36 35012430 01 November 2007

35012430 01 November 2007
III

Software Implementation of
Modbus and Character Mode
Communications
At a Glance

In This Section This section provides an introduction to the software implementation of Modbus and
Character Mode communications using Unity Pro software.

What's in this
Part?

This part contains the following chapters:

Chapter Chapter Name Page

4 Installation Methodology 39

5 Software Implementation of Modbus Communication 43

6 Software Implementation of Communication Using Character
Mode

77

7 Language Objects of Modbus and Character Mode
Communications

103

8 Dynamic Protocol Switching 135
37

Software Implementation
38 35012430 01 November 2007

35012430 01 November 2007
4

Installation Methodology
Introduction to the Installation Phase

Introduction The software installation of application-specific modules is carried out from the
various Unity Pro editors:

In offline mode
In online mode

If you do not have a processor to which you can connect, Unity Pro allows you to
carry out an initial test using a simulator. In this case, the installation is different.
39

Methodology
Installation
Phases When
Using a
Processor

The following table shows the various phases of installation using a processor:

Phase Description Mode

Configuration Processor declaration Offline

Configuration of the processor’s serial port

Declaration of
variables

Declaration of the IODDT-type variables specific to the
processor and the project variables.

Offline (1)

Association Association of IODDT variables with the configured channels
(variable editor).

Offline (1)

Programming Project programming. Offline (1)

Generation Project generation (analysis and editing of links) Offline

Transfer Transfer project to PLC Online

Debug Project debugging from debug screens and animation tables Online

Documentation Creating a documentation file and printing the miscellaneous
information relating to the project.

Online

How it Works Display of the miscellaneous information required to
supervise the project.

Online

Legend:

(1) These phases may also be performed online.
40 35012430 01 November 2007

Methodology
Installation
Phases When
Using a
Simulator

The following table shows the various phases of installation using a simulator:

Configuration of
Processors

The configuration parameters may only be accessed from the Unity Pro software.

Phase Description Mode

Configuration Processor declaration Offline

Configuration of the processor’s serial port

Declaration of
variables

Declaration of the IODDT-type variables specific to the
processor and the project variables.

Offline (1)

Association Association of IODDT variables with the configured channels
(variable editor).

Offline (1)

Programming Project programming. Offline (1)

Generation Project generation (analysis and editing of links) Offline

Transfer Transfer project to simulator Online

Simulation Program simulation without inputs/outputs Online

Adjustment/
Debugging

Project debugging from debug screens and animation tables Online

Modifying the program and adjustment parameters

Legend:

(1) These phases may also be performed online.
35012430 01 November 2007 41

Methodology
42 35012430 01 November 2007

35012430 01 November 2007
5

Software Implementation of
Modbus Communication
At a Glance

Subject of this
Chapter

This chapter presents the software implementation process for Modbus
communication.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

5.1 General 44

5.2 Modbus Communication Configuration 52

5.3 Modbus Communication Programming 65

5.4 Debugging Modbus Communication 74
43

Software Implementation: Modbus Communication
5.1 General

At a Glance

Subject of this
Section

This section presents the general points relating to Modbus communication and its
services.

What's in this
Section?

This section contains the following topics:

Topic Page

About Modbus 45

Performance 46

How to Access the Serial Link Parameters for the BMX P34 1000/2010/2020
Processors

48
44 35012430 01 November 2007

Software Implementation: Modbus Communication
About Modbus

Introduction Communicating via Modbus enables data exchange between all devices connected
to the bus. The Modbus protocol is a protocol that creates a hierarchical structure
(one master and several slaves).

The master manages all exchanges in two ways:

The master exchanges with the slave and awaits a response.
The master exchanges with all the slaves without waiting for a response (general
broadcast).

IMPROPER COMMUNICATION PORT USAGE

WARNING

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

Communication ports should be used for non-critical data transfers only.
35012430 01 November 2007 45

Software Implementation: Modbus Communication
Performance

At a Glance The tables that follow can be used to evaluate typical Modbus communication
exchange times according to different criteria.

The results displayed correspond to the average operation period for the READ_VAR
function in milliseconds.

Definition of
"Exchange
Time"

Exchange time is the time that passes between the creation of an exchange and the
end of that exchange. It therefore includes serial link communication time.

The exchange is created when the communication function call is made.

The exchange ends when one of the following events occurs:

Data is received.
An error occurs.
Time-out expires.

Exchange Times
for One Word

The table below shows exchange times for one word of Modbus communication on
a BMX P34 2020 processor:

Exchange times are similar on the BMX P34 2020 and BMX P34 2010 processors.

Exchange times on the BMX P34 1000 processor are 10% lower than those on the
BMX P34 2010/2020 processors.

Baud rate of communication in
bits per second

Cycle time in ms Exchange times in ms

4800 Cyclic 165

4800 10 170

4800 50 200

9600 Cyclic 110

9600 10 115

9600 50 150

19200 Cyclic 85

19200 10 90

19200 50 100
46 35012430 01 November 2007

Software Implementation: Modbus Communication
Exchange Times
for 100 Words

The table below shows exchange times for 100 words of Modbus communication on
a BMX P34 2020 processor:

Exchange times are similar on the BMX P34 2010 and BMX P34 2020 processors.

Exchange times on the BMX P34 1000 processor are 10% lower than those on the
BMX P34 2010/2020 processors.

Accuracy of
Measurements

All exchange times listed above come from measures with an accuracy margin of +/
-10 ms.

Baud rate of communication in
bits/s

Cycle time in ms Exchange times in ms

4800 Cyclic 590

4800 10 600

4800 50 600

9600 Cyclic 280

9600 10 285

9600 50 300

19200 Cyclic 145

19200 10 150

19200 50 150
35012430 01 November 2007 47

Software Implementation: Modbus Communication
How to Access the Serial Link Parameters for the BMX P34 1000/2010/2020
Processors

At a Glance The pages that follow explain how to access the serial port configuration screen for
the BMX P34 1000/2010/2020 processors as well as the general elements of
Modbus and Character Mode link configuration and debug screens.

How to Access
the Serial Link

The table below describes the procedure for accessing the serial link of a
BMX P34 1000/2010/2020 processor:

Step Action

1 In the project browser, open the following directory:Station\Configuration\0: PLC bus\0: rack
reference\0: processor reference\SerialPort.
Result: the following screen appears:

Station
Configuration

1
2
3
4
5
6
7

Derived Data Types
Derived FB Types
Variables & FB Instances
Communication
Program
Animation Tables
Operator Screens
Documentation

0:bus PLC
0:BMX XBP 0800

SerialPort

(P)(P): BMX CPS 2000
0:BMX P34 1000
48 35012430 01 November 2007

Software Implementation: Modbus Communication
2 Double-click on the Serial Port sub-directory.
Result: the following screen appears:

Step Action

Modbus link

MAST

Fonction :

Tâche : :

Channel 0
Serial Port Config.

PCL Bus 0.0 : SerialPort

Type Transmission speed

Delay between frames

Data Stop

Parity

RTS/CTS delay

Master

Slave

Physical line Signals

Slave

0Number of retries

1

16
Answer delay

Slave number

X10ms1

RX/TX
RS485 RX/TX+

RTS/CTS
RX/TX+
RTS/CTS+
DTR/DSR/DCD

0 X100msRS232

Even Odd None

ASCII (7 bits)
RTU (8 bits)

1 bit
2 bits

msDefault

9600 bits/s
35012430 01 November 2007 49

Software Implementation: Modbus Communication
Description of
the
Configuration
and Debug
Screens

The figure below shows a configuration screen for Modbus communication:

2

3

1

4

MAST

Function :

Task :

Channel 0
Serial Port Config.

PCL Bus 0.0 : SerialPort

Type Transmission speed

Delay between frames

Data Stop

Parity

RTS/CTS delay

Master

Slave

Physical line Signals

Slave

0Number of retries

1

16
Answer delay

Slave number

X10ms1

RX/TX
RS485 RX/TX+

RTS/CTS
RX/TX+
RTS/CTS+
DTR/DSR/DCD

0 X100ms
RS232

Even Odd None

ASCII (7 bits)
RTU (8 bits)

1 bit
2 bits

msDefault

9600 bits/s

Modbus link
50 35012430 01 November 2007

Software Implementation: Modbus Communication
Description The following table shows the different elements of the configuration and debug
screens:

Address Element Function

1 Tabs The tab in the foreground indicates the current mode. Each
mode can be selected using the corresponding tab. The
available modes are:

Configuration
Debug screen accessible in online mode only.

2 Channel Zone Enables you to:
choose between the serial port and channel 0 by clicking on
one or the other.
display the following tabs by clicking on the serial port:

"Description", which gives the characteristics of the
device.
"I/O Objects", (See Unity Pro 3.0: Operating Modes)
which is used to presymbolize the input/output objects.

display the following tabs by clicking on the channel:
Configuration
Debugging

display the channel name and symbol defined by the user
using the variables editor.

3 General
Parameters
Zone

This enables you to choose the general parameters associated
with the channel:

Function: the available functions are Modbus and Character
Mode. The default configuration is with the Modbus function.
Task: defines the MAST task in which the implicit exchange
objects of the channel will be exchanged. This zone is
grayed out and therefore not configurable.

4 Configuration
or Debugging
Zone

In configuration mode, this zone is used to configure the
channel parameters. In debug mode, it is used to debug the
communication channel.
35012430 01 November 2007 51

Software Implementation: Modbus Communication
5.2 Modbus Communication Configuration

At a Glance

Subject of this
Section

This section describes the software configuration process for Modbus
communication.

What's in this
Section?

This section contains the following topics:

Topic Page

Modbus Communication Configuration Screen 53

Accessible Modbus Functions 55

Default Values for Modbus Communication Parameters 56

Configuration Screen for Modbus Communication 57

Application-linked Modbus Parameters 59

Transmission-linked Modbus Parameters 61

Signal and Physical Line Parameters in Modbus 63
52 35012430 01 November 2007

Software Implementation: Modbus Communication
Modbus Communication Configuration Screen

General The pages that follow provide an introduction to the configuration screen for Modbus
communication.

Access to the
Configuration
Screen

To access the Modbus communication configuration screen, double-click on the
Serial Port sub-directory in the project browser (see How to Access the Serial Link
Parameters for the BMX P34 1000/2010/2020 Processors, p. 48).

Illustration The figure below shows the default configuration screen for Modbus
communication:

MAST

Function :

Task :

Channel 0
Serial Port Config.

PCL Bus 0.0 : SerialPort

Type Transmission speed

Delay between characters

Data Stop

Parity

RTS/CTS delay

Master

Slave

Physical line Signals

Slave

0Number of retries

1

16
Answer delay

Slave number

X10ms1

RX/TX
RS485 RX/TX+

RTS/CTS
RX/TX+
RTS/CTS+
DTR/DSR/DCD

0 X100ms
RS232

Even Odd None

ASCII (7 bits)
RTU (8 bits)

1 bit
2 bits

msDefault

9600 bits/s

Modbus link
35012430 01 November 2007 53

Software Implementation: Modbus Communication
Description This zone is used to configure channel parameters. In online mode, this zone is not
accessible and will be grayed out. In offline mode, the zone is accessible but some
parameters may not be accessible and will therefore be grayed out.

The configuration screen is composed of three types of parameters:

Application parameters
Transmission parameters
Signal and physical line parameters
54 35012430 01 November 2007

Software Implementation: Modbus Communication
Accessible Modbus Functions

At a Glance Function accessibility for configuration of the serial link of a BMX P34 1000/2010/
2020 processor using Modbus protocol depends on the physical link being used.

Accessible
Functions

The table below shows the different functions configurable according to the type of
serial link used:

X Accessible Function

- Inaccessible Function

Function RS 485 Link RS 232 Link

Master number of retries X X

Master response time X X

Slave number X X

Transmission speed X X

Delay between frames X X

Data ASCII (7 bits)
RTU (8 bits)

ASCII (7 bits)
RTU (8 bits)

Stop 1 bit
2 bits

1 bit
2 bits

Parity Odd
Even
None

Odd
Even
None

RX/TX Signals X X

RTS/CTS Signals - X

RTS/CTS delay - X
35012430 01 November 2007 55

Software Implementation: Modbus Communication
Default Values for Modbus Communication Parameters

At a Glance All Modbus communication parameters have default values.

Default Values The table below shows the default values for Modbus communication parameters:

Configuration parameter Value

Mode Slave

Physical Line RS 485

Slave number 1

Delay between frames 2 ms

Transmission speed 19200 bits/s

Parity Even

Data Bits RTU (8 bits)

Stop bits 1 bit
56 35012430 01 November 2007

Software Implementation: Modbus Communication
Configuration Screen for Modbus Communication

General The configuration screens for Modbus Master and Modbus Slave communications
are different in that the accessible parameters are not the same.

Accessing the
Configuration
Screen

To access the Modbus Master and Modbus Slave communication configuration
screens, open the Serial Port directory in the project browser (see How to Access
the Serial Link, p. 48).

Illustration The figure below shows the configuration screen for Modbus communication:

21

3

Type Transmission speed

Delay between frames

Data Stop

Parity

RTS/CTS delay

Master

Slave

Physical line Signals

Master

3Number of retries

1

16
Answer delay

Slave number

X10ms100

RX/TX
RS485 RX/TX+

RTS/CTS
RX/TX+
RTS/CTS+
DTR/DSR/DCD

0 X100ms
RS232

Even Odd None

ASCII (7 bits)
RTU (8 bits)

1 bit
2 bits

msDefault

9600 bits/s
35012430 01 November 2007 57

Software Implementation: Modbus Communication
Description The following table shows the different zones of the Modbus link configuration
screen:

Address Element Comment

1 Application
Parameters

These parameters are accessible via three zones:
Type
Master
Slave

For further information about application parameters (see
Application-linked Modbus Parameters, p. 59).

2 Transmission
Parameters

These parameters are accessible via five zones:
Transmission speed
Delay between frames
Data
Stop bits
Parity

For further information about transmission parameters (see
Transmission-linked Modbus Parameters, p. 61).

3 Signal and
Physical Line
Parameters

These parameters are accessible via three zones:
Physical line
Signals
RTS/CTS delay

For further information about signal and physical line
parameters (see Signal and Physical Line Parameters in
Modbus, p. 63).

Note: When configuring Modbus communication in Master mode, the Slave zone
is grayed out and cannot be modified and vice-versa.

Note: In this example, the "Signals" and "RTS/CTS Delay" zones are grayed out
because an RS 485 physical line has been chosen.
58 35012430 01 November 2007

Software Implementation: Modbus Communication
Application-linked Modbus Parameters

At a Glance After configuring the communication channel, you need to enter the application
parameters.

These parameters are accessible from three configuration zones:

The Type Zone
The Master Zone
The Slave Zone

The Type Zone This configuration zone appears on the screen as shown below:

This zone enables you to select the type of Modbus Protocol to be used. The two
types available are:

Master: This is to be selected when the station concerned is the master.
Slave: This is to be selected when the station concerned is a slave.

The Master Zone The configuration zone shown below is only accessible when "Master" is selected in
the "Type" zone:

This zone enables you to enter the following parameters:

Number of retries: number of connection attempts made by the master before
defining the slave as absent.

The default value is 3.
Possible values range from 0 to 15.
A value of 0 indicates no retries by the Master.

Response time: the time that elapses between the Master’s initial request and a
repeat attempt if the slave does not respond. This is the maximum time between
the transmission of the last character of the Master's request and receipt of the
first character of the request sent back by the slave.

The default value is 1 second (100*10 ms).
Possible values range from 10 ms to 10 s.

Master
 Type

3

100

 Master
Number of retries

Response time X 10 ms
35012430 01 November 2007 59

Software Implementation: Modbus Communication
The Slave Zone The configuration zone shown below is only accessible when "Slave" is selected in
the "Type" zone:

This zone enables you to enter the processor’s slave number:

The default value is 1.
Possible values range from 1 to 247.

Note: In a Modbus Slave configuration, an additional address, number 248, can be
used for a point-to-point serial communication.

7
 Slave

Slave number
60 35012430 01 November 2007

Software Implementation: Modbus Communication
Transmission-linked Modbus Parameters

At a Glance After configuring the communication channel, you need to enter the transmission
parameters.

These parameters are accessible from five zones:

The Transmission Speed Zone
The Delay Between Characters Zone
The Data Zone
The Stop Zone
The Parity Zone

The
Transmission
Speed Zone

This configuration zone appears on the screen as shown below:

You can use it to select the transmission speed of the Modbus protocol. The
selected speed has to be consistent with the other devices. The configurable values
are 300, 600, 1200; 2400, 4800, 9600 and 19200 bits per second.

The Delay
Between Frames
Zone

This configuration zone appears on the screen as shown below:

The Delay Between Frames is the minimum time separating two frames on
reception. This delay is managed when the PLC (master or slave) is receiving
messages.

9600 bits/s
 Transmission Speed

Note: The default value depends on the selected transmission speed.

 Delay Between frames
4 msDefault
35012430 01 November 2007 61

Software Implementation: Modbus Communication
The Data Zone This configuration zone appears on the screen as shown below:

This zone allows you to enter the type of coding used to communicate using Modbus
protocol. This field is set according to the other devices connected on the bus. There
are two configurable modes:

RTU mode:
the characters are coded over 8 bits.
The end of the frame is detected when there is a silence of at least 3.5
characters.
The integrity of the frame is checked using a word known as the CRC
checksum, which is contained within the frame.

ASCII mode:
The characters are coded over 7 bits.
The beginning of the frame is detected when the ":" character is received.
The end of the frame is detected by a carriage return and a line feed.
The integrity of the frame is checked using a byte called the LRC checksum,
which is contained within the frame.

The Stop Zone This configuration zone appears on the screen as shown below:

The Stop zone allows you to enter the number of stop bits used for communication.
This field is set according to the other devices. The configurable values are:

1 bit
2 bits

The Parity Zone This configuration zone appears on the screen as shown below:

This zones enables you to determine whether a parity bit is added or not, as well as
its type. This field is set according to the other devices. The configurable values are:

Even
Odd
None

 Data
ASCII (7 bits)
RTU (8 bits)

 Stop
 1 bit
 2 bits

 Parity
Even Odd None
62 35012430 01 November 2007

Software Implementation: Modbus Communication
Signal and Physical Line Parameters in Modbus

At a Glance After configuring the communication channel, you need to enter the transmission
parameters.

These parameters are accessible via three zones:

The Physical Line Zone
The Signals Zone
The RTS/CTS Delay Zone

The Physical
Line Zone

This configuration zone appears on the screen as shown below:

In this zone, you can choose between two types of physical line for the serial port on
the BMX P34 1000/2010/2020 processors:

The RS 232 line
The RS 485 line

Physical Line
RS232

RS485
35012430 01 November 2007 63

Software Implementation: Modbus Communication
The Signals Zone This configuration zone appears on the screen as shown below:

In this zone, you can select the signals supported by the RS 232 physical line:

RX/TX
RX/TX + RTS/CTS

If the RS 485 is configured, the entire zone will be grayed out and the default value
will be RX/TX.

The RTS/CTS
Delay Zone

This configuration zone appears on the screen as shown below:

Only available for Character mode configuration (see Signal and Physical Line
Parameters in Character Mode, p. 91).

Note: Only RX/TX and RX/TX + RTS/CTS signals are available when configuring
the serial port for BMX P34 1000/2010/2020 processors.

Signals
RX/TX

 RX/TX
+ RTS/CTS

 RX/TX
+ RTS/CTS
+ DTR/DSR/DCD

1
RTS/CTS delay

X100 ms
64 35012430 01 November 2007

Software Implementation: Modbus Communication
5.3 Modbus Communication Programming

At a Glance

Subject of this
Section

This section describes the programming process involved in implementing Modbus
communication.

What's in this
Section?

This section contains the following topics:

Topic Page

Services Supported by a Modbus Link Slave Processor 66

Services Supported by a Modbus Link Master Processor 67
35012430 01 November 2007 65

Software Implementation: Modbus Communication
Services Supported by a Modbus Link Slave Processor

At a Glance When used as a slave processor in a Modbus link, a BMX P34 1000/2010/2020
processor supports several services.

Data Exchanges A slave processor manages the following requests:

Diagnostics and
Maintenance

The diagnostics and maintenance information accessible from a Modbus link is
listed below:

Modbus request Function code PLC object

Read n output bits 16#01 %M

Read n output words 16#03 %MW

Write n output bits 16#0F %M

Write n output words 16#10 %MW

Designation Function code/sub-
function code

Echo 16#08 / 16#00

Read the PLC diagnostic registers 16#08 / 16#02

Reset PLC diagnostic registers and counters to 0 16#08 / 16#0A

Read number of messages on the bus 16#08 / 16#0B

Read number of communication errors on the bus 16#08 / 16#0C

Read number of exception errors on the bus 16#08 / 16#0D

Read number of messages received from the slave 16#08 / 16#0E

Read number of "no responses" from the slave 16#08 / 16#0F

Read number of negative acknowledgements from the slave 16#08 / 16#10

Read number of exception responses from the slave 16#08 / 16#11

Read number of overflowing characters on the bus 16#08 / 16#12

Read event counter 16#0B

Read connection event 16#0C

Read identification 16#11

Read Device identification 16#2B / 16#0E
66 35012430 01 November 2007

Software Implementation: Modbus Communication
Services Supported by a Modbus Link Master Processor

At a Glance When used as the master processor in a Modbus link, a BMX P34 1000/2010/2020
processor supports several services via the READ_VAR and WRITE_VAR
communication functions.

Data Exchanges The following requests are addressed to the slave device with which you wish to
carry out reading or writing of variables.

These requests use the READ_VAR and WRITE_VAR communication functions:

The READ_VAR
and WRITE_VAR
Communication
Functions

Two specific communication functions are defined for sending and receiving data via
a Modbus communication channel:

READ_VAR: to read variables.
WRITE_VAR: to write variables.

Modbus request Function code Communication function

Read bits 16#01 or 16#02 READ_VAR

Read words 16#03 or 16#04 READ_VAR

Write bits 16#0F WRITE_VAR

Write words 16#10 WRITE_VAR

Note: write utilities can be sent in broadcast mode. In this case no response is
returned to the transmitter. It is therefore advisable to configure a time-out to
acknowledge the activity bit of the function.

Note: The objects read by M340 PLC can be of the type %I and %IW.In this case
READ_VAR function generate a Modbus request FC 0x2 or 0x4. In a Quantum PLC
it allows accessing to Input Status or Input Status Registers.
35012430 01 November 2007 67

Software Implementation: Modbus Communication
Example of
Programming in
DFB

The diagram below represents an example of programming of the READ_VAR and
WRITE_VAR communication functions in DFB language:

Example of
Programming in
Ladder

The diagram below represents an example of programming of the READ_VAR and
WRITE_VAR communication functions in Ladder language:

ADDM

IN OUT‘0.0.0.6’

1
.2

READ_VAR
2

Receiving_Table

.1

 ‘%MW’
 100

ADDM

IN OUT‘0.0.0.6’

1
.2

WRITE_VAR
2

.1

ADR
OBJ ‘%MW’

 10

OBJ

GEST GEST

NUM
NB

Management_Table
 10

NUM

GEST GEST

NB
EMIS

100

Management_Table

Management_Table
Data_to_write

Management_Table

ADR RECP

ADDM

EN EN0

IN OUT Destination_address‘0.0.0.6’

.2

READ_VAR

EN EN0

OBJ

.1

Destination_address
 ‘%MW’
 100

WRITE_VAR

EN EN0
ADR
OBJ
NUM

.3

Destination_address
 ‘%MW’
 100
 10

NUM
NB 10

NB
EMIS Data_to_write

Management_Table GEST GEST Management_Table

Management_TableManagement_Table GEST GEST

Receiving_TableADR RECP
68 35012430 01 November 2007

Software Implementation: Modbus Communication
Programming
Example in ST

The lines of code below represent an example of programming of the READ_VAR
and WRITE_VAR communication functions in ST language:

READ_VAR(ADDM(’0.0.0.6’), ’%MW’, 100, 10, Management_Table,
Receiving_Table);

WRITE_VAR(ADDM(’0.0.0.6’), ’%MW’, 100, 10, Data_to_write,
Management_Table);
35012430 01 November 2007 69

Software Implementation: Modbus Communication
Cancelling an
Exchange

An exchange executed by the READ_VAR and WRITE_VAR functions can be
cancelled with either of two ways of programming, which are both presented in ST
language below:

Using the CANCEL function:
IF (%MW40.0) THEN
 %MW200:=SHR(%MW40,8;)
 CANCEL(%MW200,%MW185);
END_IF;
%MW40 is the GEST parameter (management table). %MW40.0 corresponds to the
activity bit of the READ_VAR function and is set to 1 when the communication
function is active. If this bit is set to 1, the program carries out the following
instructions:

Moves the %MW40 bits one byte (8 bits) to the right and loads the byte
corresponding to the communication’s exchange number into the %MW200
word.
Cancels the exchange whose exchange number is contained within the
%MW200 word using the CANCEL function.

Using the communication function cancel bit:
IF (%MW40.0) THEN
 SET(%MW40.1);
 READ_VAR(ADDM(’0.0.0.6’), ’%MW’, 100, 10, %MW40:4,
%MW10:10);
END_IF;
%MW40 is the GEST parameter (management table). %MW40.0 corresponds to the
activity bit of the READ_VAR function and is set to 1 when the communication
function is active. If this bit is set to 1, the program sets the %MW40.1 bit, the
function cancel bit, to 1. This stops communication of the READ_VAR function.

Note: when using the communication function cancel bit contained in the function
exchange management word (%MW40 in this example), the function (READ_VAR
in this example) must be called in order to activate the cancel of the exchange.

Note: When using the communication function cancel bit, it is possible to cancel a
communication from an animation table. This can be done by simply setting the
function cancel bit to 1 (%MW40.1 in this example) and then start again the
communication function.

Note: this example of programming concerns the READ_VAR function, but is
equally applicable to the WRITE_VAR function.
70 35012430 01 November 2007

Software Implementation: Modbus Communication
Description of
ADDM Function
Parameters

The following table outlines the various parameters for the ADDM function:

Note: the CANCEL function uses a report word for the CANCEL function (%MW185
in this example).

Parameter Type Description

IN STRING Address of device on bus or serial link. The syntax
of the address is of the ‘r.m.c.node’ type. The
address is made up of the following parameters:

r: rack number of the processor, always = 0.
m: slot number of the processor within the rack,
always = 0.
c: channel number, always = 0 as the serial link
of a processor is always channel 0.
node: number of slave to which the request is
being sent.

OUT ARRAY [0..7] OF INT Array representing the address of a device. This
parameter can be used as an input parameter for
several communication functions.
35012430 01 November 2007 71

Software Implementation: Modbus Communication
Description of
WRITE_VAR
Function
Parameters

The following table outlines the various parameters of the WRITE_VAR function:

Parameter Type Description

ADR ARRAY [0..7] OF INT Address of the destination entity given by the OUT
parameter of the ADDM function.

OBJ STRING Type of object to be written. The available types are
as follows:

%M: internal bit
%MW: internal word

Note: WRITE_VAR cannot be used for %I and %IW
variables.

NUM DINT Address of first object to be written.

NB INT Number of consecutive objects to be written.

EMIS ARRAY [n..m] OF INT Word table containing the value of the objects to be
written.

GEST ARRAY [0..4] OF INT Exchange management table consisting of the
following words:

Rank 1 word: a word managed by the system
and consisting of two bytes:

Most significant byte: exchange number
Least significant byte: activity bit (rank 0) and
cancel bit (rank 1)

Rank 2 word: a word managed by the system
and consisting of two bytes:

Most significant byte: operation report
Least significant byte: communication report

Rank 3 word: a word managed by the user
which defines the maximum response time
using a time base of 100 ms.
Rank 4 word: a word managed by the user
which defines the length of the exchange.
72 35012430 01 November 2007

Software Implementation: Modbus Communication
Description of
READ_VAR
Function
Parameters

The following table outlines the various parameters for the READ_VAR function:

Parameter Type Description

ADR ARRAY [0..7] OF INT Address of the destination entity given by the OUT
parameter of the ADDM function.

OBJ STRING Type of object to be read. The available types are
as follows:

%M: internal bit
%MW: internal word
%I: external input bit
%IW: external input word

NUM DINT Address of first object to be read.

NB INT Number of consecutive objects to be read.

GEST ARRAY [0..3] OF INT Exchange management table consisting of the
following words:

Rank 1 word: a word managed by the system
and consisting of two bytes:

Most significant byte: exchange number
Least significant byte: activity bit (rank 0) and
cancel bit (rank 1)

Rank 2 word: a word managed by the system
and consisting of two bytes:

Most significant byte: operation report
Least significant byte: communication report

Rank 3 word: a word managed by the user
which defines the maximum response time
using a time base of 100 ms.
Rank 4 word: a word managed by the user
which defines the length of the exchange.

RECP ARRAY [n..m] OF INT Word table containing the value of the objects read.
35012430 01 November 2007 73

Software Implementation: Modbus Communication
5.4 Debugging Modbus Communication

Modbus Communication Debug Screen

General The Modbus communication debug screen can only be accessed in online mode.

Accessing the
Debug Screen

The following table describes the procedure for accessing the debug screen for
Modbus communication:

Description of
the Debug
Screen

The debug screen is divided into two zones:

The Type zone
The Counters zone

The Type Zone This zone looks like this:

It indicates the type of Modbus function configured (in this case, Master).

The Counters
Zone

This zone looks like this:

Here, you can view the various debugging counters.

The Reset Counters button resets all the debug mode counters to zero.

Step Action

1 Access the configuration screen for Modbus communication. (see Access to
the Configuration Screen, p. 53)

2 Select the "Debug" tab on the screen that appears.

Type
Master

Bus message count
 Counters

Slave Exception error count
Slave no response count
Slave busy count Bus character overrun count

Slave NACK count
Slave message count
Bus communication error count

0
0
0
0

RAZ counters

0
0
0
0

74 35012430 01 November 2007

Software Implementation: Modbus Communication
How a Counter
Operates

The Modbus communication debugging counters are as follows:

 Bus message counter: This counter indicates the number of messages that the
processor has detected on the serial link. Messages with a negative CRC check
result are not counted.
Bus communication errors counter: This counter indicates the number of negative
CRC check results counted by the processor. If a character error (overflow, parity
error) is detected, or if the message is fewer than 3 bytes long, the system that
receives the data cannot perform the CRC check. In such cases, the counter is
incremented accordingly.
Slave exception error counter: This counter indicates the number of Modbus
exception errors detected by the processor.
Slave message counter: This counter indicates the number of messages
received and processed by the Modbus link.
Slave "no response" counter: This counter indicates the number of messages
sent by the remote system for which it has received no response (neither a
normal response, nor an exception response). It also counts the number of
messages received in broadcast mode.
Negative slave acknowledgement counter: This counter indicates the number of
messages sent to the remote system for which it has returned a negative
acknowledgement.
Slave busy counter: This counter indicates the number of messages sent to the
remote system for which it has returned a "slave busy" exception message.
Bus character overflow counter: This counter indicates the number of messages
sent to the processor that it is unable to acquire because of character overflow on
the bus. Overflow is caused by:

Character-type data that are transmitted on the serial port more quickly than
they can be stored.
A loss of data due to a hardware malfunction.

Note: For all counters, the count begins at the most recent restart, clear counters
operation or processor power-up.
35012430 01 November 2007 75

Software Implementation: Modbus Communication
76 35012430 01 November 2007

35012430 01 November 2007
6

Software Implementation of
Communication Using Character
Mode
At a Glance

Subject of this
Section

This chapter presents the software implementation of communication using
Character Mode.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

6.1 General 78

6.2 Character Mode Communication Configuration 82

6.3 Character Mode Communication Programming 92

6.4 Debugging Character Mode communication 98
77

Software Implementation: Communication in Character Mode
6.1 General

At a Glance

Subject of this
Section

This section provides an overview of the general points relating to Character Mode
communication and its services.

What's in this
Section?

This section contains the following topics:

Topic Page

About Character Mode Communication 79

Performance 80
78 35012430 01 November 2007

Software Implementation: Communication in Character Mode
About Character Mode Communication

Introduction Communication in Character Mode enables dialog and communication functions to
be carried out between the PLCs and the following devices:

Regular peripherals (printer, keyboard-screen, workshop terminal, etc.)
Specialized peripherals (barcode readers, etc.)
Calculators (checking, production management, etc.)
Heterogeneous devices (numerical commands, variable speed controllers, etc)
External modem
35012430 01 November 2007 79

Software Implementation: Communication in Character Mode
Performance

At a Glance The following tables can be used to evaluate typical exchange times in Character
Mode.

The results displayed correspond to the average operation period for the
PRINT_CHAR function in milliseconds.

Definition of
"Exchange
Time"

Exchange time is the time that passes between the creation of an exchange and the
end of that exchange. It therefore includes serial link communication time.

The exchange is created when the communication function call is made.

The exchange ends when one of the following events occurs:

Reception of data.
An error
Time-out expires.
80 35012430 01 November 2007

Software Implementation: Communication in Character Mode
Exchange Times
for 80 characters

The table below shows exchange times for the transmission of 80 characters in
Character Mode on a BMX P34 2020 processor:

Exchange times are similar on the BMX P34 2010 and BMX P34 2020 processors.

Exchange times on the BMX P34 1000 processor are 10% lower than those on the
BMX P34 2010 and BMX P34 2020 processors.

Accuracy of
Measurements

All exchange times listed above come from measures with an accuracy margin of +/
-10 ms.

Baud rate of communication
in bits/s

Cycle time in ms Exchange times in ms

1200 10 805

1200 20 820

1200 50 850

1200 100 900

1200 255 980

4800 10 210

4800 20 220

4800 50 250

4800 100 300

4800 255 425

9600 10 110

9600 20 115

9600 50 145

9600 100 200

9600 255 305

19200 10 55

19200 20 60

19200 50 95

19200 100 100

19200 255 250
35012430 01 November 2007 81

Software Implementation: Communication in Character Mode
6.2 Character Mode Communication Configuration

At a Glance

Subject of this
Section

This section describes the Configuration process used when implementing
Character Mode communication.

What's in this
Section?

This section contains the following topics:

Topic Page

Character Mode Communication Configuration Screen 83

Accessible Functions in Character Mode 85

Default Values for Character Mode Communication Parameters 86

Transmission Parameters in Character Mode 87

Message End Parameters in Character Mode 89

Signal and Physical Line Parameters in Character Mode 91
82 35012430 01 November 2007

Software Implementation: Communication in Character Mode
Character Mode Communication Configuration Screen

General The pages that follow provide an introduction to the configuration screen for
Character Mode communication.

Accessing the
Configuration
Screen

The following table describes the procedure for accessing the configuration screen
for Character Mode communication:

Step Action

1 Double-click on the Serial Port sub-directory in the project browser (see How to Access the Serial
Link Parameters for the BMX P34 1000/2010/2020 Processors, p. 48).

2 Select the CHARACTER MODE LINK function on the screen that appears.
35012430 01 November 2007 83

Software Implementation: Communication in Character Mode
Illustration The figure below shows the default configuration screen for Character Mode
communication:

Description The configuration screen is used to configure the channel parameters. The screen
displays three types of parameters:

Transmission parameters
Message end detection parameters
Signal and physical line parameters

MAST

Function :

Task :

Channel 0
Serial Port Config.

PCL Bus 0.0 : SerialPort

Transmission speed

Stop on silence

Data Stop

Parity

RTS/CTS delayPhysical line Signals

2

RX/TX
RS485 RX/TX+

RTS/CTS
RX/TX+
RTS/CTS+
DTR/DSR/DCD

0 X100msRS232

Even Odd None

7 bits
8 bits

1 bit
2 bits

msStop

Stop on reception

0
Stop
CR
Character included

LF

Character 1

0
Stop
CR
Character included

LF

Character 2

Character mode lin

9600 bits/s
84 35012430 01 November 2007

Software Implementation: Communication in Character Mode
Accessible Functions in Character Mode

At a Glance Function accessibility for configuration of the serial link of a BMX P34 1000/2010/
2020 using Character Mode protocol depends on the physical link being used.

Accessible
Functions

The table below shows the different functions configurable according to the type of
serial link used:

X Accessible Function

- Inaccessible Function

Function RS 485 Link RS 232 Link

Transmission speed X X

Data 7 bits
8 bits

7 bits
8 bits

Stop 1 bit
2 bits

1 bit
2 bits

Parity Odd
Even
None

Odd
Even
None

Stop on Reception X X

Stop on Silence X X

RX/TX Signals X X

RTS/CTS Signals - X

RTS/CTS delay - X
35012430 01 November 2007 85

Software Implementation: Communication in Character Mode
Default Values for Character Mode Communication Parameters

At a Glance All Character Mode communication parameters have default values.

Default Values The table below shows the default values for Character Mode communication
parameters:

Configuration parameter Value

Physical Line RS 485

Transmission speed 9600 bits/s

Parity Odd

Data Bits 8 bits

Stop bits 1 bit
86 35012430 01 November 2007

Software Implementation: Communication in Character Mode
Transmission Parameters in Character Mode

At a Glance After configuring the communication channel, you need to enter the transmission
parameters.

These parameters are accessible via four zones:

The Transmission Speed Zone
The Data Zone
The Stop Zone
The Parity Zone

The
Transmission
Speed Zone

This configuration zone appears on the screen as shown below:

You can use this zone to select the transmission speed of the Character Mode
protocol. The selected speed has to be consistent with the other devices. The
configurable values are 300, 600, 1200; 2400, 4800, 9600 and 19200 bits per
second.

The Data Zone This configuration zone appears on the screen as shown below:

In this zone, you can specify the size of the data being exchanged on the link. The
available values are:

7 bits
8 bits

You are advised to adjust the number of data bits according to the remote device
being used.

Transmission Speed
9600 bits/s

 Data
7 bits
8 bits
35012430 01 November 2007 87

Software Implementation: Communication in Character Mode
The Stop Zone This zone looks like this:

The Stop zone allows you to enter the number of stop bits used for communication.
You are advised to adjust the number of stop bits according to the remote device
being used. The configurable values are:

1 bit
2 bits

The Parity Zone This configuration zone appears on the screen as shown below:

This zone enables you to determine whether a parity bit is added or not, as well as
its type. You are advised to adjust parity according to the remote device being used.
The configurable values are:

Even
Odd
None

 Stop

2 bits
1 bit

 Parity
Even Odd None
88 35012430 01 November 2007

Software Implementation: Communication in Character Mode
Message End Parameters in Character Mode

At a Glance After configuring the communication channel, you need to enter the message end
detection parameters.

These parameters are accessible via two zones:

The Stop on Reception Zone: stop on reception of a special character.
The Stop on Silence Zone: stop on silence.

Conditions of
Use

Selecting Stop on Silence means that Stop on Reception is deselected and vice
versa.

The Stop on
Reception Zone

This configuration zone appears on the screen as shown below:

A reception request can be terminated once a specific character is received.

By checking the Stop option, it is possible to configure Stop on Reception to be
activated by a specific end-of-message character:

CR: enables you to detect the end of the message by a carriage return.
LF: enables you to detect the end of the message by a line feed.
Data entry field: enables you to identify an end-of-message character other than
the CR or LF characters, using a decimal value:

Between 0 and 255 if the data is coded over 8 bits
Between 0 and 127 if the data is coded over 7 bits

Character included: enables you to include the end-of-message character in the
reception table of the PLC application.

It is possible to configure two end-of-reception characters. In the window below, the
end of reception of a message is detected by an LF or CR character.

Stop

 Stop on reception

CR LF
Characters included

 Character 2

13

Stop
CR LF
Characters included

10

 Character 1
35012430 01 November 2007 89

Software Implementation: Communication in Character Mode
The Stop on
Silence Zone

This configuration zone appears on the screen as shown below:

This zone enables you to detect the end of a message on reception by the absence
of message end characters over a given time.

Stop on Silence is validated by checking the Stop box. The duration of the silence
(expressed in milliseconds) is set using the data entry field.

Note: The available values range from 1 ms to 10000 ms and depend on the
transmission speed selected.

 Stop on silence
msStop 1
90 35012430 01 November 2007

Software Implementation: Communication in Character Mode
Signal and Physical Line Parameters in Character Mode

At a Glance After configuring the communication channel, you need to enter the physical line and
signal parameters. These parameters are identical to the signal and physical line
parameters for Modbus communication (see Signal and Physical Line Parameters
in Modbus, p. 63).

The RTS/CTS
Delay Zone

This configuration zone appears on the screen as shown below:

Before a character string is transmitted, the module activates the RTS (Request To
(see Signal and Physical Line Parameters in Character Mode, p. 91)Send) signal
and waits for the CTS (Clear To Send) signal to be activated.

This zone enables you to enter the maximum waiting time between the two signals.
When this value is timed out, the request is not transmitted on the bus. Configurable
values range from 0 s to 10 s.

Note: The default value is 0 ms.

Note: A value of 0 s indicates that the delay between the two signals has not been
managed.

1
RTS/CTS delay

X100 ms

Hazard of loss of characters

WARNING

Put a value smaller than the time needed to transmit 24 characters added to MAST
TASK period time, in order to not lose characters. Refer toINPUT_CHAR (see
Unity Pro 3.1, Communication, Block Library: Description) function.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.
35012430 01 November 2007 91

Software Implementation: Communication in Character Mode
6.3 Character Mode Communication Programming

Character Mode Communication Functions

Available
Functions

Two specific communication functions are defined for sending and receiving data via
a communication channel in Character Mode:

PRINT_CHAR: send a character string of a maximum of 1,024 bytes.
INPUT_CHAR: read a character string of a maximum of 1,024 bytes.

The Modicon M340 PLC's serial port is full duplex, so a PRINT_CHAR function can
be sent even when an INPUT_CHAR function has been sent and is still pending.

Example of
Programming in
FBD

The diagram below represents an example of programming of the PRINT_CHAR and
INPUT_CHAR communication functions in DFB language:

Note: For INPUT_CHAR function, a configured time-out is necessary if the channel
is configured without stop on silence, to acknowledge the activity bit of the function.
For PRINT_CHAR function, it is advisable but not necessary to configure a time-
out.

ADDM

IN OUT‘0.0.0’

1
.2

PRINT_CHAR
2

ADR

GEST GEST

.1

‘string_to_send’ EMIS

ADDM

IN OUT‘0.0.0.SYS’

1
.2

INPUT_CHAR
2

.1

ADR RECP
Reset
NB
GEST GEST

reset_integer_to_0
 character_string_received

10

Management_Table Management_Table

Management_Table Management_Table
92 35012430 01 November 2007

Software Implementation: Communication in Character Mode
Example of
Programming in
Ladder

The diagram below represents an example of programming of the PRINT_CHAR and
INPUT_CHAR communication functions in Ladder language:

Example of
Programming in
ST

The lines of code below represent an example of programming of the PRINT_CHAR
and INPUT_CHAR communication functions in ST language:

PRINT_CHAR(ADDM(’0.0.0’), ‘string_to_send’,
Management_Table);

INPUT_CHAR(ADDM(’0.0.0.SYS’), reset_integer_to_0, 10,
Management_Table, character_string_received);

Other features of
INPUT_CHAR
function

List of features of INPUT_CHAR_function.

It is possible to launch the INPUT_CHAR function before ending the characters
to the PLC.
If the ending characters are used, if in the buffer there are many ending
characters and the buffer hasn't been reset, each INPUT_CHAR function
receives the beginning string of the buffer until it reaches the first ending
character and then the buffer is removed from the read characters.
It works in the same way for reading a number of characters.
If ending characters are configured it could be possible to use the number of
characters function.

ADDM

EN EN0

IN OUT Destination address‘0.0.0’

.2

PRINT_CHAR

EN EN0
ADR
EMIS
GEST GEST

.1

Destination address
 ‘string_to_send’

INPUT_CHAR

EN EN0
ADR RECP character_string_received
Reset
NB

.3

Destination address
 reset_integer_to_0
 10

GEST GEST

Management_TableManagement_Table

Management_Table Management_Table
35012430 01 November 2007 93

Software Implementation: Communication in Character Mode
Cancelling an
Exchange

There are two ways of programming that enable an exchange executed by the
PRINT_CHAR and INPUT_CHAR functions to be cancelled. These are both
presented in ST language below:

Using the CANCEL function:
IF (%MW40.0) THEN
 %MW200:=SHR(%MW40,8;)
 CANCEL(%MW200,%MW185);
END_IF;
%MW40 is the GEST parameter (management table). %MW40.0 corresponds to the
activity bit of the PRINT_CHAR function and is set to 1 when the communication
function is active. If this bit is set to 1, the program carries out the following
instructions:

Moves the %MW40 bits one byte (8 bits) to the right and loads the byte
corresponding to the communication’s exchange number into the %MW200
word.
Cancels the exchange whose exchange number is contained within the
%MW200 word using the CANCEL function.

Using the communication function’s cancel bit:
IF (%MW40.0) THEN
 SET(%MW40.1);
 PRINT_CHAR(ADDM(’0.0.0’), ‘string_to_send’, %MW40:4);
END_IF;
%MW40 is the GEST parameter (management table). %MW40.0 corresponds to the
activity bit of the PRINT_CHAR function and is set to 1 when the communication
function is active. If this bit is set to 1, the program sets the %MW40.1 bit, the
function cancel bit, to 1. This stops communication of the PRINT_CHAR function.

Note: When using the communication function cancel bit, the function must be
called in order to enable the cancel bit contained in the function exchange
management word (%MW40 in this example).

Note: When using the communication function cancel bit, it is possible to cancel a
communication from an animation table. This can be done by simply setting the
function cancel bit to 1 (%MW40.1 in this example).

Note: This example of programming concerns the PRINT_CHAR function, but is
equally applicable to the INPUT_CHAR function.
94 35012430 01 November 2007

Software Implementation: Communication in Character Mode
Description of
ADDM Function
Parameters

The following table outlines the various parameters for the ADDM function:

Note: The CANCEL function uses a report word for the CANCEL function (%MW185
in this example).

Parameter Type Description

IN STRING Address of device on bus or serial link. The syntax
of the address is of the ‘r.m.c.node’ type. The
address is made up of the following parameters:

r: rack number of the destination system, always
= 0.
m: slot number of the destination system within
the rack, always = 0.
c: channel number, always = 0 as the serial link
of a remote system is always channel 0.
node: optional field that may take the following
two values:

SYS
Empty field

OUT ARRAY [0..7] OF INT Table showing the address of a device. This
parameter can be used as an input parameter for
several communication functions.
35012430 01 November 2007 95

Software Implementation: Communication in Character Mode
Description of
PRINT_CHAR
Function
Parameters

The following table outlines the various parameters of the PRINT_CHAR function:

Parameter Type Description

ADR ARRAY [0..7] OF INT Address of the destination entity given by the OUT
parameter of the ADDM function.

EMIS STRING Character string to be sent.

GEST ARRAY [0..3] OF INT Exchange management table consisting of the
following words:

Rank 1 word: a word managed by the system
and consisting of two bytes:

Most significant byte: exchange number
Least significant byte: activity bit (rank 0) and
cancel bit (rank 1)

Rank 2 word: a word managed by the system
and consisting of two bytes:

Most significant byte: operation report
Least significant byte: communication report

Rank 3 word: a word managed by the user,
which defines the maximum response time
using a time base of 100 ms.
Rank 4 word: a word managed by the user
which defines the length of the exchange.
96 35012430 01 November 2007

Software Implementation: Communication in Character Mode
Description of
INPUT_CHAR
Function
Parameters

The following table outlines the various parameters of the INPUT_CHAR function:

Parameter Type Description

ADR ARRAY [0..7] OF INT Address of the destination entity given by the OUT
parameter of the ADDM function.

Reset INT This parameter may take two values:
Value 1: reset module reception memory to 0
Value 0: do not reset module reception memory
to 0

NB INT Length of character string to be received.

RECP STRING Character string received. This string is saved in a
character string.

GEST ARRAY [0..3] OF INT Exchange management table consisting of the
following words:

Rank 1 word: a word managed by the system
and consisting of two bytes:

Most significant byte: exchange number
Least significant byte: activity bit (rank 0) and
cancel bit (rank 1)

Rank 2 word: a word managed by the system
and consisting of two bytes:

Most significant byte: operation report
Least significant byte: communication report

Rank 3 word: a word managed by the user
which defines the maximum response time
using a time base of 100 ms.
Rank 4 word: a word managed by the user
which defines the length of the exchange.
35012430 01 November 2007 97

Software Implementation: Communication in Character Mode
6.4 Debugging Character Mode communication

At a Glance

Subject of this
Section

This section describes the Debugging process during set-up of Character Mode
communication.

What's in this
Section?

This section contains the following topics:

Topic Page

Debug Screen for Character Mode communication 99

Debugging Parameters in Character Mode 101
98 35012430 01 November 2007

Software Implementation: Communication in Character Mode
Debug Screen for Character Mode communication

General The Character Mode debug screen is accessible in online mode.

Accessing the
Debug Screen

The following table describes the procedure for accessing the debug screen for
Character Mode communication:

Description of
the Debug
Screen

The debug screen consists of an Error zone and a Signals zone.

The Error Zone The Error zone looks like this:

This zone indicates the number of communication errors counted by the processor:

On transmission: corresponds to the number of errors on transmission
(image of %MW4 word).
On reception: corresponds to the number of errors on reception
(image of %MW5 word).

The Reset Counters button resets both counters to zero.

Step Action

1 Access the configuration screen for Character Mode communication. (see
Accessing the Configuration Screen, p. 83)

2 Select the "Debug" tab on the screen that appears.

Reset counters
On reception
On transmission 0

0

Errors
35012430 01 November 2007 99

Software Implementation: Communication in Character Mode
The Signals Zone The Signals zone looks like this:

This zone indicates the activity of the signals:

CTS RS232: shows the activity of the CTS signal.
DCD RS232: not managed by the processor (no activity on this LED).
DSR RS232: not managed by the processor (no activity on this LED).

DCD RS232
CTS RS232

Signals

DSR RS232
100 35012430 01 November 2007

Software Implementation: Communication in Character Mode
Debugging Parameters in Character Mode

At a Glance The debug zone contains the Errors window.

Errors Window This window looks like this:

This window indicates the number of communication errors counted by the
processor:

On transmission: corresponds to the number of errors on transmission
(image of %MW4 word).
On reception: corresponds to the number of errors on reception
(image of %MW5 word).

The Reset Counters button resets both counters to zero.

Reset counters
On reception
On transmission 0

0

Errors
35012430 01 November 2007 101

Software Implementation: Communication in Character Mode
102 35012430 01 November 2007

35012430 01 November 2007
7

Language Objects of Modbus and
Character Mode Communications
At a Glance

Subject of this
Chapter

This chapter describes the language objects associated with Modbus and Character
Mode communications and the different ways of using them.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

7.1 Language Objects and IODDTs of Modbus and Character
Mode Communications

104

7.2 General Language Objects and IODDTs for All Communication
Protocols

112

7.3 Language Objects and IODDTs Associated with Modbus
Communication

116

7.4 Language Objects and IODDTs associated with Character
Mode Communication

124

7.5 The IODDT Type T_GEN_MOD Applicable to All Modules 132
103

Language Objects of Communications
7.1 Language Objects and IODDTs of Modbus and
Character Mode Communications

At a Glance

Subject of this
Section

This section provides an overview of the general points concerning IODDTs and
language objects for Modbus and Character Mode communications.

What's in this
Section?

This section contains the following topics:

Topic Page

Introduction to the Language Objects for Modbus and Character Mode
Communications

105

Implicit Exchange Language Objects Associated with the Application-Specific
Function

106

Explicit Exchange Language Objects Associated with the Application-Specific
Function

107

Management of Exchanges and Reports with Explicit Objects 109
104 35012430 01 November 2007

Language Objects of Communications
Introduction to the Language Objects for Modbus and Character Mode
Communications

General The IODDTs are predefined by the manufacturer. They contain input/output
language objects belonging to the channel of an application-specific module.

Modbus and Character Mode communications have three associated IODDTs:

T_COM_STS_GEN, which applies to all communication protocols.
T_COM_MB_BMX, which is specific to Modbus communication.
T_COM_CHAR_BMX, which is specific to Character Mode communication.

Types of
Language
Objects

In each IODDT we find a set of language objects that enable us to control them and
check that they are operating correctly.

There are two types of language objects:

Implicit Exchange Objects: These objects are automatically exchanged on each
cycle revolution of the task associated with the processor.
Explicit Exchange Objects: These objects are exchanged on the application's
request, using explicit exchange instructions.

Implicit exchanges concern the status of the processors, communication signals,
slaves, etc.

Explicit exchanges are used to define the processor settings and perform
diagnostics.

Note: IODDT variables can be created in two different ways:
Using the I/O objects tab (See Unity Pro 3.0: Operating Modes).
Using the Data Editor (See Unity Pro 3.0: Operating Modes).
35012430 01 November 2007 105

Language Objects of Communications
Implicit Exchange Language Objects Associated with the Application-Specific
Function

At a Glance Use of an integrated, application-specific interface or the addition of a module
automatically enhances the language objects application used to program this
interface or module.

These objects correspond to the input/output images and software data of the
module or integrated application-specific interface.

Reminders The module inputs (%I and %IW) are updated in the PLC memory at the start of the
task, or when the PLC is in RUN or STOP mode.

The outputs (%Q and %QW) are updated at the end of the task, only when the PLC
is in RUN mode.

Illustration The diagram below shows the operating cycle of a PLC task (cyclical execution):

Note: When the task is in STOP mode, either of the following are possible,
depending on the configuration selected:

Outputs are set to fallback position (fallback mode).

Outputs are maintained at their last value (maintain mode).

Internal processing

Acquisition of inputs

Execution of the program

Update of outputs

RUNSTOP
106 35012430 01 November 2007

Language Objects of Communications
Explicit Exchange Language Objects Associated with the Application-Specific
Function

At a Glance Explicit exchanges are exchanges performed at the user program's request, using
the following instructions:

READ_STS (see Unity 3.0 I/O Management Block Library, Description): read
status words
WRITE_CMD (see Unity 3.0 I/O Management Block Library, Description): write
command words

These exchanges apply to a set of %MW objects of the same type (status, commands
or parameters) belonging to a channel.

General Principle
for Using Explicit
Instructions

The diagram below shows the different types of explicit exchanges that can be made
between the processor and the communication channel:

Note: These objects provide information about the processor (e.g.: fault type for a
channel, etc.), can be used to command them (e.g.: switch command) and to
define their operating modes (save and restore adjustment parameters in
application).

Note: The READ_STS and WRITE_CMD instructions are executed at the same time
as the task that calls them and always without fail. The result of these instructions
is available immediately after their execution.

Command parameters

Status parameters READ_STS

WRITE_CMDCommand parameters

Status parameters

%MWr.m.c.
or

%MWr.m.MOD.r objects

PLC processor Communication channel
35012430 01 November 2007 107

Language Objects of Communications
Managing
Exchanges

During an explicit exchange, it is necessary to check its performance in order that
data is only taken into account when the exchange has been correctly executed.

To this end, two types of information are available:

Information concerning the exchange in progress (see Section Language Objects
and IODDTs of Modbus and Character Mode Communications).
The exchange report (see Section Language Objects and IODDTs of Modbus
and Character Mode Communications).

The following diagram illustrates the management principle for an exchange:

Note: In order to avoid several simultaneous explicit exchanges for the same
channel, it is necessary to test the value of the word EXCH_STS (%MWr.m.c.0) of
the IODDT associated to the channel before to call any EF using this channel.

Explicit Exchange
Execution

Exchange in progress Exchange Report
108 35012430 01 November 2007

Language Objects of Communications
Management of Exchanges and Reports with Explicit Objects

At a Glance When data is exchanged between the PLC memory and the module, the module
may require several task cycles to acknowledge this information. All IODDTs use
two words to manage exchanges:

EXCH_STS (%MWr.m.c.0) : exchange in progress.
EXCH_RPT (%MWr.m.c.1) : report.

Illustration The illustration below shows the different significant bits for managing exchanges:

Note: Depending on the localization of the module, the management of the explicit
exchanges (%MW0.0.MOD.0.0 for example) will not be detected by the
application:

for in-rack modules, explicit exchanges are done immediately on the local PLC
Bus and are finished before the end of the execution task, so the READ_STS, for
example, is always finished when the %MW0.0.mod.0.0 bit is checked by the
application.
for remote bus (Fipio for example), explicit exchanges are not synchronous with
the execution task, so the detection is possible by the application.

Command (bit 1)
Status (bit 0)

Status parameters

Command parameters

READ_STS

WRITE_CMD

EXCH_RPT (%MWr.m.c.1)

EXCH_STS (%MWr.m.c.0)
35012430 01 November 2007 109

Language Objects of Communications
Description of
Significant Bits

Each bit of the words EXCH_STS (%MWr.m.c.0) and EXCH_RPT (%MWr.m.c.1) is
associated with a parameter type:

Rank 0 bits are associated with the status parameters:
The STS_IN_PROGR bit (%MWr.m.c.0.0) indicates whether a read request
for the status words is in progress.
The STS_ERR bit (%MWr.m.c.1.0) specifies whether a read request for the
status words is accepted by the module channel.

Rank 1 bits are associated with the command parameters:
The CMD_IN_PROGR bit (%MWr.m.c.0.1) indicates whether command
parameters are being sent to the module channel.
The CMD_ERR bit (%MWr.m.c.1.1) indicates whether or not the command
parameters are accepted by the module channel.

Explicit
Exchange
Execution Flags:
EXCH_STS

The table below shows the EXCH_STS word (%MWr.m.c.0) explicit exchange
control bits:

Note: r corresponds to the number of the rack and m to the position of the module
in the rack, while c corresponds to the channel number in the module.

Note: Exchange and report words also exist at module level EXCH_STS
(%MWr.m.MOD) and EXCH_RPT (%MWr.m.MOD.1) as per T_GEN_MOD type
IODDTs.

Standard symbol Type Acces
s

Meaning Address

STS_IN_PROGR BOOL R Reading of channel status
words in progress

%MWr.m.c.0.0

CMD_IN_PROGR BOOL R Command parameters
exchange in progress

%MWr.m.c.0.1

ADJ_IN_PROGR BOOL R Adjust parameters exchange
in progress

%MWr.m.c.0.2

RECONF_IN_PROGR BOOL R Reconfiguration of the module
in progress

%MWr.m.c.0.15

Note: If the module is not present or is disconnected, exchanges using explicit
objects (READ_STS, for example) are not sent to the processor (STS_IN_PROG
(%MWr.m.c.0.0) = 0), but the words are refreshed.
110 35012430 01 November 2007

Language Objects of Communications
Explicit
Exchange
Report:
EXCH_RPT

The table below shows the EXCH_RPT (%MWr.m.c.1) word report bits:

Standard symbol Type Access Meaning Address

STS_ERR BOOL R Error reading channel status
words
(1 = failure)

%MWr.m.c.1.0

CMD_ERR BOOL R Error during a command
parameter exchange
(1 = failure)

%MWr.m.c.1.1

ADJ_ERR BOOL R Error while exchanging
adjustment parameters
(1 = failure)

%MWr.m.c.1.2

RECONF_ERR BOOL R Error during reconfiguration
of the channel
(1 = failure)

%MWr.m.c.1.15
35012430 01 November 2007 111

Language Objects of Communications
7.2 General Language Objects and IODDTs for All
Communication Protocols

At a Glance

Subject of this
Section

This section presents the general language objects and IODDTs that apply to all
communication protocols.

What's in this
Section?

This section contains the following topics:

Topic Page

Details of IODDT Implicit Exchange Objects of Type T_COM_STS_GEN 113

Details of IODDT Explicit Exchange Objects of Type T_COM_STS_GEN 114
112 35012430 01 November 2007

Language Objects of Communications
Details of IODDT Implicit Exchange Objects of Type T_COM_STS_GEN

At a Glance The following table presents the IODDT implicit exchange objects of type
T_COM_STS_GEN applicable to all communication protocols except Fipio.

Error bit The table below presents the meaning of the CH_ERROR error bit (%Ir.m.c.ERR):

Standard symbol Type Access Meaning Address

CH_ERROR EBOOL R Communication channel error
bit.

%Ir.m.c.ERR
35012430 01 November 2007 113

Language Objects of Communications
Details of IODDT Explicit Exchange Objects of Type T_COM_STS_GEN

At a Glance This section presents the T_COM_STS_GEN type IODDT explicit exchange objects
applicable to all communication protocols except Fipio. It includes the word type
objects whose bits have a specific meaning. These objects are described in detail
below.

In this part, the IODDT_VAR1 variable is of typeT_COM_STS_GEN.

Observations In general, the meaning of the bits is given for bit status 1. In specific cases, each
bit status is explained.

Not all bits are used.

Explicit
Exchange
Execution Flags:
EXCH_STS

The table below shows the meaning of channel exchange control bits from the
EXCH_STS channel (%MWr.m.c.0):

Explicit
Exchange
Report:
EXCH_RPT

The table below presents the meaning of the EXCH_RPT exchange report bits
(%MWr.m.c.1):

Standard symbol Type Access Meaning Address

STS_IN_PROGR BOOL R Read channel status words in
progress.

%MWr.m.c.0.0

CMD_IN_PROGR BOOL R Command parameter exchange
in progress.

%MWr.m.c.0.1

Standard symbol Type Access Meaning Address

STS_ERR BOOL R Read error for channel status
words.

%MWr.m.c.1.0

CMD_ERR BOOL R Error during command
parameter exchange.

%MWr.m.c.1.1
114 35012430 01 November 2007

Language Objects of Communications
Standard
Channel Faults:
CH_FLT

The table below shows the meaning of the bits of the status word CH_FLT
(%MWr.m.c.2):

Reading is performed by the READ_STS (IODDT_VAR1) instruction .

Standard symbol Type Access Meaning Address

NO_DEVICE BOOL R No devices are working on the
channel.

%MWr.m.c.2.0

ONE_DEVICE_FLT BOOL R A device on the channel is
faulty.

%MWr.m.c.2.1

BLK BOOL R Terminal block fault (not
connected).

%MWr.m.c.2.2

TO_ERR BOOL R Time out error (defective
wiring).

%MWr.m.c.2.3

INTERNAL_FLT BOOL R Internal error or channel self-
testing.

%MWr.m.c.2.4

CONF_FLT BOOL R Different hardware and
software configurations.

%MWr.m.c.2.5

COM_FLT BOOL R Problem communicating with
the PLC.

%MWr.m.c.2.6

APPLI_FLT BOOL R Application error (adjustment
or configuration error).

%MWr.m.c.2.7
35012430 01 November 2007 115

Language Objects of Communications
7.3 Language Objects and IODDTs Associated with
Modbus Communication

At a Glance

Subject of this
Section

This section presents the language objects and IODDTs associated with Modbus
communication.

What's in this
Section?

This section contains the following topics:

Topic Page

Details concerning Explicit Exchange Language Objects for a Modbus
Function

117

Details of the IODDT Implicit Exchange Objects of type T_COM_MB_BMX 118

Details of the IODDT Explicit Exchange Objects of type T_COM_MB_BMX 119

Details of language objects associated with configuration Modbus mode 122
116 35012430 01 November 2007

Language Objects of Communications
Details concerning Explicit Exchange Language Objects for a Modbus Function

At a Glance The table below shows the language objects for Modbus communications in master
or slave mode. These objects are not integrated into the IODDTs.

List of Explicit
Exchange
Objects in Master
or Slave mode

The table below shows the explicit exchange objects:

Address Type Access Meaning

%MWr.m.c.4 INT R Number of responses received without CRC
error.

%MWr.m.c.5 INT R Number of responses received with CRC error.

%MWr.m.c.6 INT R Number of responses received with an exception
code in slave mode.

%MWr.m.c.7 INT R Number of messages sent in slave mode.

%MWr.m.c.8 INT R Number of messages sent without response in
slave mode.

%MWr.m.c.9 INT R Number of responses received with a negative
acknowledgement.

%MWr.m.c.10 INT R Number of messages repeated in slave mode.

%MWr.m.c.11 INT R Number of character errors.

%MWr.m.c.24.0 BOOL RW Reset of error counters.
35012430 01 November 2007 117

Language Objects of Communications
Details of the IODDT Implicit Exchange Objects of type T_COM_MB_BMX

At a Glance The tables below show the implicit exchange objects of the IODDT of the
T_COM_MB_BMX type that are applicable to Modbus serial.

Error bit The following table shows the meaning of the error bit CH_ERROR (%Ir.m.c.ERR):

Word object in
Modbus master
mode

The table below shows the meaning of the bit of the INPUT_SIGNALS word
(%IWr.m.c.0):

Word object in
Modbus slave
mode

The language objects are identical to those of the Modbus master function. Only the
objects in the following table differ.

The table below shows the meaning of the bit of the INPUT_SIGNALS word
(%IWr.m.c.0):

Standard symbol Type Access Meaning Address

CH_ERROR EBOOL R Communication channel error bit. %Ir.m.c.ERR

Standard symbol Type Access Meaning Address

CTS BOOL R Ready to send signal. %IWr.m.c.0.2

Standard symbol Type Access Meaning Address

LISTEN_ONLY BOOL R List mode only signal. %IWr.m.c.0.8
118 35012430 01 November 2007

Language Objects of Communications
Details of the IODDT Explicit Exchange Objects of type T_COM_MB_BMX

At a Glance This part presents the explicit exchange objects of the IODDT of the
T_COM_MB_BMX type that are applicable to Modbus serial. It includes the word type
objects whose bits have a specific meaning. These objects are described in detail
below.

In this part, the IODDT_VAR1 variable is of the T_COM_STS_GEN type.

Observations In general, the meaning of the bits is given for bit status 1. In specific cases, each
bit status is explained.

Not all bits are used.

Explicit
Exchange
Execution Flags:
EXCH_STS

The following table shows the meanings of the exchange control bits of the
EXCH_STS channel (%MWr.m.c.0):

Explicit
Exchange
Report:
EXCH_RPT

The table below presents the various meanings of the EXCH_RPT exchange report
bits (%MWr.m.c.1):

Standard symbol Type Access Meaning Address

STS_IN_PROGR BOOL R Reading of channel status
words in progress.

%MWr.m.c.0.0

CMD_IN_PROGR BOOL R Command parameter
exchange in progress.

%MWr.m.c.0.1

ADJ_IN_PROGR BOOL R Adjustment parameter
exchange in progress.

%MWr.m.c.0.2

Standard symbol Type Access Meaning Address

STS_ERR BOOL R Read error for channel
status words.

%MWr.m.c.1.0

CMD_ERR BOOL R Error during command
parameter exchange.

%MWr.m.c.1.1

ADJ_ERR BOOL R Error while exchanging
adjustment parameters.

%MWr.m.c.1.2
35012430 01 November 2007 119

Language Objects of Communications
Standard
Channel Faults:
CH_FLT

The following table explains the various meanings of the CH_FLT status word bits
(%MWr.m.c.2):

Reading is performed by the READ_STS instruction (IODDT_VAR1).

Specific channel
status:
%MWr.m.c.3

The table below shows the various meanings of the bits of the PROTOCOL channel
status word (%MWr.m.c.3):

Reading is performed by the READ_STS (IODDT_VAR1) instruction.

Standard symbol Type Access Meaning Address

NO_DEVICE BOOL R No devices are working on
the channel.

%MWr.m.c.2.0

ONE_DEVICE_FLT BOOL R A device on the channel is
faulty.

%MWr.m.c.2.1

BLK BOOL R Terminal block fault (not
connected).

%MWr.m.c.2.2

TO_ERR BOOL R Time out error (defective
wiring).

%MWr.m.c.2.3

INTERNAL_FLT BOOL R Internal error or channel
self-testing.

%MWr.m.c.2.4

CONF_FLT BOOL R Different hardware and
software configurations.

%MWr.m.c.2.5

COM_FLT BOOL R Problem communicating
with the PLC.

%MWr.m.c.2.6

APPLI_FLT BOOL R Application error
(adjustment or
configuration error).

%MWr.m.c.2.7

Standard symbol Type Access Meaning Address

PROTOCOL INT R Byte 0 = 16#06 for Modbus
master function.

%MWr.m.c.3

PROTOCOL INT R Byte 0 = 16#07 for Modbus slave
function.

%MWr.m.c.3
120 35012430 01 November 2007

Language Objects of Communications
Channel
command:
%MWr.m.c.24

The table below shows the various meanings of the bits of the CONTROL
(%MWr.m.c.24) word:

The command is carried out with the WRITE_CMD (IODDT_VAR1) instruction.

For further information about how to change protocols, you can refer to protocol
changes (see Changing Protocol, p. 135).

Standard symbol Type Access Meaning Address

RST_CPT BOOL R/W Resets error counters
when it is set to 1.

%MWr.m.c.24.0

TO_MODBUS_MAS
TER

BOOL R/W Change from Character
Mode or Modbus Slave
mode to Modbus Master
mode.

%MWr.m.c.24.12

TO_MODBUS_SLAV
E

BOOL R/W Change from Character
Mode or Modbus Master
mode to Modbus Slave
mode.

%MWr.m.c.24.13

TO_CHAR_MODE BOOL R/W Change from Modbus to
Character Mode.

%MWr.m.c.24.14
35012430 01 November 2007 121

Language Objects of Communications
Details of language objects associated with configuration Modbus mode

At a Glance The following tables present all configuration language objects for communication
Modbus mode. These objects are not integrated in the IODDTs, and may be
displayed by the application program.

List of explicit
exchange
objects for
Master mode

The table below shows the explicit exchange objects.

Address Type Access Meaning

%KWr.m.c.0 INT R The byte 0 of this word corresponds to the type:
Value 6 corresponds to Master
Value 7 corresponds to Slave

%KWr.m.c.1 INT R The byte 0 of this word corresponds to the
transmission speed. This byte can take several
values:

Value -2 (0xFE) corresponds to 300 bits/s
Value -1 (0xFF) corresponds to 600 bits/s
Value 0 (0x00) corresponds to 1200 bits/s
Value 1 (0x01) corresponds to 2400 bits/s
Value 2 (0x02) corresponds to 4800 bits/s
Value 3 (0x03) corresponds to 9600 bits/s
Value 4 (0x04) corresponds to 19200 bits/s
(default value)

The byte 1 of this word corresponds to the format:
Bit 8: number of bits (1 = 8 bits (RTU), 0 =
7 bits (ASCII))
bit 9 = 1: parity management (1 = with, 0 =
without)
Bit 10: parity Type (1 = odd, 0 = even)
Bit 11: number of stop bits (1 = 1 bit, 0 = 2 bits)
Bit 13: physical line (1 = RS232, 0 = RS485)
Bit 15 : signals. If RS232 is selected this bit
can take 2 different value, 0 for RX/TX and 1
for RX/TX + RTS/CTS. If RS485 is selected
the default value is 0 and corresponds to RX/
TX.

%KWr.m.c.2 INT R Delay between frames: value in ms from 2 to
10000 ms (depends on the transmission speed
and format selected). Its default value is 2 ms if
the default box is checked. 10 s corresponds to
infinite wait.
122 35012430 01 November 2007

Language Objects of Communications
List of explicit
exchange
objects for Slave
mode

The language objects for the Modbus slave function are identical to those of the
Modbus master function. The only difference is for the following objects:.

%KWr.m.c.3 INT R In Modbus Master Mode this object corresponds
to the answer delay in ms from 10 ms to 1000 ms.
100 ms is the value by default. 10 s corresponds
to infinite wait.

%KWr.m.c.4 INT R Only available in Modbus Master mode. Byte 0 of
this word is the number of retries from 0 to 15.
The value by default is 3.

%KWr.m.c.5 INT R This word corresponds to RTS/CTS delay time in
hundreds of ms from 0 to 100 if RS232 is
selected. If RS485 is selected the default value is
0.

Address Type Access Meaning

Address Type Access Meaning

%KWr.m.c.3 INT R In Modbus Slave Mode the byte 0 of this object
corresponds to the slave number [0, 247].

%KWr.m.c.4 INT R Used only in Modbus Master mode.
35012430 01 November 2007 123

Language Objects of Communications
7.4 Language Objects and IODDTs associated with
Character Mode Communication

At a Glance

Subject of this
Section

This section presents the language objects and IODDTs associated with Character
Mode communication.

What's in this
Section?

This section contains the following topics:

Topic Page

Details concerning Explicit Exchange Language Objects for Communication in
Character Mode

125

Details of IODDT Implicit Exchange Objects of Type T_COM_CHAR_BMX 126

Details of IODDT Explicit Exchange Objects of Type T_COM_CHAR_BMX 127

Details of language objects associated with configuration in Character mode 130
124 35012430 01 November 2007

Language Objects of Communications
Details concerning Explicit Exchange Language Objects for Communication in
Character Mode

At a Glance The following tables show all configuration language objects for communication in
Character Mode. These objects are not integrated into the IODDTs.

List of Explicit
Exchange
Objects

The table below shows the explicit exchange objects:

Address Type Access Meaning

%MWr.m.c.4 INT R Error in transmitted characters.

%MWr.m.c.5 INT R Error in received characters.
35012430 01 November 2007 125

Language Objects of Communications
Details of IODDT Implicit Exchange Objects of Type T_COM_CHAR_BMX

At a Glance The tables below show the implicit exchange objects of the IODDT of the
T_COM_CHAR_BMX type that are applicable to Character Mode communication.

Error bit The following table shows the meaning of the error bit CH_ERROR (%Ir.m.c.ERR):

Signal object on
input

The table below shows the meaning of the bit of the INPUT_SIGNALS word
(%IWr.m.c.0):

Standard symbol Type Access Meaning Address

CH_ERROR EBOOL R Communication channel
error bit.

%Ir.m.c.ERR

Standard symbol Type Access Meaning Address

CTS BOOL R Ready to send signal. %IWr.m.c.0.2
126 35012430 01 November 2007

Language Objects of Communications
Details of IODDT Explicit Exchange Objects of Type T_COM_CHAR_BMX

At a Glance This part presents the explicit exchange objects of the IODDT of the
T_COM_CHAR_BMX type that are applicable to Character Mode communication. It
includes the word type objects whose bits have a specific meaning. These objects
are described in detail below.

In this part, the IODDT_VAR1 variable is of the T_COM_STS_GEN type.

Observations In general, the meaning of the bits is given for bit status 1. In specific cases, each
bit status is explained.

Not all bits are used.

Explicit
exchange
execution flag:
EXCH_STS

The following table shows the meanings of the exchange control bits of the
EXCH_STS channel (%MWr.m.c.0) :

Explicit
exchange report:
EXCH_RPT

The table below presents the meaning of the EXCH_RPT exchange report bits
(%MWr.m.c.1):

Standard symbol Type Access Meaning Address

STS_IN_PROGR BOOL R Read channel status words
in progress.

%MWr.m.c.0.0

CMD_IN_PROGR BOOL R Command parameter
exchange in progress.

%MWr.m.c.0.1

ADJ_IN_PROGR BOOL R Adjustment parameter
exchange in progress.

%MWr.m.c.0.2

Standard symbol Type Access Meaning Address

STS_ERR BOOL R Read error for channel status
words.

%MWr.m.c.1.0

CMD_ERR BOOL R Error during command
parameter exchange.

%MWr.m.c.1.1

ADJ_ERR BOOL R Error during adjustment
parameter exchange.

%MWr.m.c.1.2
35012430 01 November 2007 127

Language Objects of Communications
Standard
channel faults,
CH_FLT

The following table explains the various meanings of the CH_FLT status word bits
(%MWr.m.c.2) :

Reading is performed by the READ_STS instruction (IODDT_VAR1).

Specific channel
status,
%MWr.m.c.3

The table below shows the various meanings of the bits of the PROTOCOL
(%MWr.m.c.3) channel status word:

Reading is performed by the READ_STS (IODDT_VAR1) instruction.

Standard symbol Type Access Meaning Address

NO_DEVICE BOOL R No device is working on the
channel.

%MWr.m.c.2.0

ONE_DEVICE_FLT BOOL R A device on the channel is
faulty.

%MWr.m.c.2.1

BLK BOOL R Terminal block fault (not
connected).

%MWr.m.c.2.2

TO_ERR BOOL R Time out error (defective
wiring).

%MWr.m.c.2.3

INTERNAL_FLT BOOL R Internal error or channel self-
testing.

%MWr.m.c.2.4

CONF_FLT BOOL R Different hardware and
software configurations.

%MWr.m.c.2.5

COM_FLT BOOL R Problem communicating with
the PLC.

%MWr.m.c.2.6

APPLI_FLT BOOL R Application error (adjustment
or configuration error).

%MWr.m.c.2.7

Standard symbol Type Access Meaning Address

PROTOCOL INT R Byte 0 = 16#03 for Character
Mode function.

%MWr.m.c.3
128 35012430 01 November 2007

Language Objects of Communications
%MWr.m.c.24
channel
command

The table below shows the various meanings of the bits of the CONTROL
(%MWr.m.c.24) word:

The command is carried out with the WRITE_CMD (IODDT_VAR1) instruction.

For further information about how to change protocols, you can refer to protocol
changes (see Changing Protocol, p. 135).

Standard symbol Type Access Meaning Address

RST_CPT BOOL R/W Resets error counters
when it is set to 1.

%MWr.m.c.24.0

TO_MODBUS_MAS
TER

BOOL R/W Change from Character
Mode or Modbus Slave
mode to Modbus Master
mode.

%MWr.m.c.24.12

TO_MODBUS_SLAV
E

BOOL R/W Change from Character
Mode or Modbus Master
mode to Modbus Slave
mode.

%MWr.m.c.24.13

TO_CHAR_MODE BOOL R/W Change from Modbus to
Character Mode.

%MWr.m.c.24.14
35012430 01 November 2007 129

Language Objects of Communications
Details of language objects associated with configuration in Character mode

At a Glance The following tables present all configuration language objects for communication
Character mode. These objects are not integrated in the IODDTs, and may be
displayed by the application program.

List of explicit
exchange
objects for
Character mode

The table below shows the explicit exchange objects.

Address Type Access Meaning

%KWr.m.c.0 INT R The byte 0 of this word corresponds to the type.
Value 3 corresponds to Character Mode.

%KWr.m.c.1 INT R The byte 0 of this word corresponds to the
transmission speed. This byte can take several
values:

Value -2 (0xFE) corresponds to 300 bits/s
Value -1 (0xFF) corresponds to 600 bits/s
Value 0 (0x00) corresponds to 1200 bits/s
Value 1 (0x01) corresponds to 2400 bits/s
Value 2 (0x02) corresponds to 4800 bits/s
Value 3 (0x03) corresponds to 9600 bits/s
(default value)
Value 4 (0x04) corresponds to 19200 bits/s

The byte 1 of this word corresponds to the format:
Bit 8: number of bits (1 = 8 bits (RTU), 0 =
7 bits (ASCII))
bit 9 = 1: parity management (1 = with, 0 =
without)
Bit 10: parity Type (1 = odd, 0 = even)
Bit 11: number of stop bits (1 = 1 bit, 0 = 2 bits)
Bit 13: physical line (1 = RS232, 0 = RS485)
Bit 15 : signals. If RS232 is selected this bit can
take 2 different value, 0 for RX/TX and 1 for
RX/TX + RTS/CTS. If RS485 is selected the
default value is 0 and corresponds to RX/TX

%KWr.m.c.2 INT R Entered value in ms of stop on silence (depends
on the transmission speed and format selected).
Value 0 means no silence detection.

%KWr.m.c.5 INT R This word corresponds to RTS/CTS delay time in
hundreds of ms from 0 to 100 if RS232 is selected.
If RS485 is selected the default value is 0.
130 35012430 01 November 2007

Language Objects of Communications
%KWr.m.c.6 INT R Bit 0 of Byte 0 can have 2 values:
value 1 corresponds to the stop checkbox in
the Stop on reception area for character 1
when checked
value 0 corresponds to the stop checkbox in
the Stop on reception area for character 1
when unchecked

Bit 1 of Byte 0 can have 2 values:
value 1 corresponds to the Character Included
checkbox in the Stop on reception area for
character 1 when checked
value 0 corresponds to the Character Included
checkbox in the Stop on reception area for
character 1 when unchecked

Byte 1 of this word corresponds to the entered
value of stop on reception of character 1 from 0 to
255.

%KWr.m.c.7 INT R Bit 0 of Byte 0 can have 2 values:
value 1 corresponds to the stop checkbox in
the Stop on reception area for character 2
when checked
value 0 corresponds to the stop checkbox in
the Stop on reception area for character 2
when unchecked

Bit 1 of Byte 0 can have 2 values:
value 1 corresponds to the Character Included
checkbox in the Stop on reception area for
character 2 when checked
value 0 corresponds to the Character Included
checkbox in the Stop on reception area for
character 2 when unchecked

Byte 1 of this word corresponds to the entered
value of stop on reception of character 2 from 0 to
255.

Address Type Access Meaning
35012430 01 November 2007 131

Language Objects of Communications
7.5 The IODDT Type T_GEN_MOD Applicable to All
Modules

Details of the Language Objects of the IODDT of Type T_GEN_MOD

At a Glance All the modules of Modicon M340 PLCs have an associated IODDT of type
T_GEN_MOD.

Observations In general, the meaning of the bits is given for bit status 1. In specific cases an
explanation is given for each status of the bit.

Some bits are not used.

List of Objects The table below presents the objects of the IODDT.

Standard symbol Type Access Meaning Address

MOD_ERROR BOOL R Module error bit %Ir.m.MOD.ERR

EXCH_STS INT R Module exchange control
word

%MWr.m.MOD.0

STS_IN_PROGR BOOL R Reading of status words of
the module in progress

%MWr.m.MOD.0.0

EXCH_RPT INT R Exchange report word %MWr.m.MOD.1

STS_ERR BOOL R Fault when reading module
status words

%MWr.m.MOD.1.0

MOD_FLT INT R Internal error word of the
module

%MWr.m.MOD.2

MOD_FAIL BOOL R Internal error, module failure %MWr.m.MOD.2.0

CH_FLT BOOL R Faulty channel(s) %MWr.m.MOD.2.1

BLK BOOL R Terminal block fault %MWr.m.MOD.2.2

CONF_FLT BOOL R Hardware or software
configuration fault

%MWr.m.MOD.2.5

NO_MOD BOOL R Module missing or
inoperative

%MWr.m.MOD.2.6

EXT_MOD_FLT BOOL R Internal error word of the
module (Fipio extension
only)

%MWr.m.MOD.2.7

MOD_FAIL_EXT BOOL R Internal fault, module
unserviceable (Fipio
extension only)

%MWr.m.MOD.2.8
132 35012430 01 November 2007

Language Objects of Communications
CH_FLT_EXT BOOL R Faulty channel(s) (Fipio
extension only)

%MWr.m.MOD.2.9

BLK_EXT BOOL R Terminal block fault (Fipio
extension only)

%MWr.m.MOD.2.10

CONF_FLT_EXT BOOL R Hardware or software
configuration fault (Fipio
extension only)

%MWr.m.MOD.2.13

NO_MOD_EXT BOOL R Module missing or
inoperative (Fipio extension
only)

%MWr.m.MOD.2.14

Standard symbol Type Access Meaning Address
35012430 01 November 2007 133

Language Objects of Communications
134 35012430 01 November 2007

35012430 01 November 2007
8

Dynamic Protocol Switching
Changing Protocol

General This part describes how to change the protocol used by a serial communication
using the WRITE_CMD(IODDT_VAR1) command. This command can be used to
switch between the following three protocols:

Modbus Slave
Modbus Master
Character Mode

Note: IODDT_VAR1 variable must be a T_COM_MB_BMX type.
135

Software Implementation: Dynamic Protocol Switching
Changing
Protocol: The
Principle

You must create first an IODDT variable linked to the processor’s serial channel,
then set to 1 the bit of word IODDT_VAR1.CONTROL (%MWr.m.c.24) that
corresponds to the change of protocol desired:

TO_MODBUS_MASTER (Bit 12): Current protocol is changed to Modbus Master.
TO_MODBUS_SLAVE (Bit 13): Current protocol is changed to Modbus Slave.
TO_CHAR_MODE (Bit 14): Current protocol is changed to Character Mode.

Afterwards, apply the WRITE_CMD instruction to the IODDT variable linked to the
processor’s serial channel.

The diagram below shows the protocol changes to be made according to the bits of
the IODDT_VAR1.CONTROL (%MWr.m.c.24) word set to 1:

Note: IODDT_VAR1.CONTROL (%MWr.m.c.24) is part of the IODDT variable
IODDT_VAR1.

Note: In order for changes to be made from one protocol to another, the processor
must initially be configured to Modbus Slave mode.

Modbus Slave Modbus Master

Character Mode

Bit 13

Bit 12

Bit 14 Bit 12Bit 13 Bit 14
136 35012430 01 November 2007

Software Implementation: Dynamic Protocol Switching
Uses Three protocol changes are used:
Transfer to Modbus Master: The protocol change is a two-stage process:

Transfer from the Modbus Slave configuration to the Modbus Master
configuration
Return to the initial Modbus Slave configuration

The aim of Modbus Master configuration is to send information about an event to
another PLC. When a change is made from Modbus Slave configuration to
Modbus Master configuration, transmission, signal and physical line parameters
remain the same. Only the values of the following parameters specific to Modbus
Master configuration are changed:

The Delay Between Frames is set to its default value, which depends on
transmission speed.
Answer delay is set to 3,000 ms
Number of retries set to 3

Transfer to Character Mode: This protocol change is a two-stage process:
Transfer from Modbus Slave configuration to Character Mode configuration
Return to the initial Modbus Slave configuration.

The aim of Character Mode configuration is to communicate with a private
protocol (a modem, for instance). When a change is made from Modbus Slave
configuration to Character Mode configuration, transmission, signal and physical
line parameters remain the same. Only the message end parameter specific to
Character Mode is set to stop on silence with a timeout of 1000 ms.
Transfer to the Character Mode and Modbus Master protocols: This protocol
change is a three-stage process:

Transfer from Modbus Slave configuration to Character Mode configuration.
Transfer from Character Mode configuration to Modbus Master configuration.
Return to the initial Modbus Slave configuration.

The aim of Character Mode configuration is to communicate with a private
protocol (a modem, for instance). Once the exchange has finished, the user
switches to the Modbus Master configuration in order to send information about
an event to another PLC. Once the message has been sent, the user returns to
the initial Modbus Slave configuration.

Warm and Cold
Starts

Changes in protocol are not affected by the %S0 and %S1 bits (the bits set to 1 during
a cold and warm start respectively). However, a cold or warm start of the PLC will
configure the serial port to its default values or to values programmed into the
application.

Note: All three cases, the default configuration remains Modbus Slave.
35012430 01 November 2007 137

Software Implementation: Dynamic Protocol Switching
138 35012430 01 November 2007

35012430 01 November 2007
IV

Quick start : example of Serial link
implementation
At a glance

Overview This section presents an example of Serial link implementation.

What's in this
Part?

This part contains the following chapters:

Chapter Chapter Name Page

9 Description of the application 141

10 Installing the application using Unity Pro 145

11 Starting the Application 173
139

Example of Serial link implementation
140 35012430 01 November 2007

35012430 01 November 2007
9

Description of the application
Overview of the application

At a glance The application described in this document is a Modbus communication application
via modems..
141

Description of the application
Example
illustration

The figure below illustrates the example:

The devices communicate with each other using modems. The supervisor is
Modbus master whereas the X and Y PLCs are slaves.

The devices communicate with each other using modems.

The goal of the example is to write the data area values of PLC X to PLC Y.

To do this, the PLC X must become Modbus Master.

Each day, the supervisor communicates with the PLCs to recover information.

If there’s an alarm on PLC X, it switches in Modbus Master mode and sends data to
PLC Y

To simpify programming, the modems have been initialized with the correct
parameters via a programming terminal. These parameters are stored in non-
volatile memory by the AT&W commands.

PLC X PLC Y

Modem Modem

Modem Supervisor
142 35012430 01 November 2007

Description of the application
Operating mode The operating of the application is as follow:

Step Action

1 The PLC X port is switched to Character mode.

2 The PLC X sends a dial message to the modem.

3 The PLC X port is switched to Master Modbus mode.

4 The Master PLC (X) sends data to the Slave PLC (Y).

5 The port is switched to character mode.

6 The PLC X sends a disconnection message to the modem.

7 The PLC X port is switched to Slave Modbus mode.
35012430 01 November 2007 143

Description of the application
144 35012430 01 November 2007

35012430 01 November 2007
10

Installing the application using
Unity Pro
At a glance

Subject of this
chapter

This chapter describes the procedure for creating the application described. It
shows, in general and in more detail, the steps in creating the different components
of the application.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

10.1 Presentation of the solution used 146

10.2 Developping the application 147
145

Installing the application using Unity Pro
10.1 Presentation of the solution used

The different steps in the process using Unity Pro

At a glance The following logic diagram shows the different steps to follow to create the
application. A chronological order must be respected in order to correctly define all
of the application elements.

Description Description of the different types:

Launching of Unit Pro
and

selection of the processor

Configuration of project
in

Configuration

Configuration of I/O derived variables
in

Configuration

Creation of variables
in

Variables & FB instances

Creation of Section
in

Programs/Tasks/MAST

Generation of project, connection to API
and

switch to RUN mode
146 35012430 01 November 2007

Installing the application using Unity Pro
10.2 Developping the application

At a glance

Subject of this
section

This section gives a step-by-step description of how to create the application using
Unity Pro.

What's in this
Section?

This section contains the following topics:

Topic Page

Creating the project 148

Declaration of variables 152

Using a modem 157

Procedure for programming 159

Programming structure 161

Programming 164
35012430 01 November 2007 147

Installing the application using Unity Pro
Creating the project

At a glance For the development of the example, a project associated with the PLC X must be
created.

Procedure for
creating a project

The table below shows the procedure for creating the project using Unity Pro.

Note: For more information, see Unity Pro online help (click on ?, then Unity, then
Unity Pro, then Operate modes, and Project configuration).

Etape Action

1 Launch the Unity Pro software,

2 Click on File then New to select a BMX P34 2010 processor:

3 Confirm with OK.

PLC Description
M340

BMX P34 1000
BMX P34 2010
BMX P34 2020
BMX P34 2030

New Project

OK

Cancel

Help

M340

CPU 340-20 Modbus CANopen

Premium

Version

CPU 340-20 Modbus Ethernet

CPU 340-10 Modbus

CPU 340-20 Ethernet CANopen
Premium

01.00
01.00
01.00
01.00

Quantum Quantum
148 35012430 01 November 2007

Installing the application using Unity Pro
Module selection The table below shows the procedure for selecting discrete module.

Step Action

1 In the Project browser double-click on Configuration then on 0:Bus X
and on 0:BMX XBP ••• (Where 0 is the rack number),

2 In the Bus X window, select a slot (for example slot 1) and double-click on it,

3 Choose the BMX DDI 1602 counting input module,

4 Confirm with OK.

Part Number Description
Basic Micro local drop

Communication

BMX DAI 1604

New Device

OK

Cancel

Help

Dig 16 In 120 Vac

Analog

Topological Address 0.1

Counting
Discrete

Dig 16 In 48 Vdc SinkBMX DDI 1603
Dig 32 In 24 Vdc SinkBMX DDI 3202K
Dig 64 In 24 Vdc SinkBMX DDI 6402K
Dig 8 In 24 Vdc 8 Out Trans PositivBMX DDM 16022
Dig 8 In 24 Vdc 8 Out RelaysBMX DDM 16025
Dig 16 In 24 Vdc 16 Out Trans PositivBMX DDM3202K
Dig 16 Out Trans SourceBMX DDO 1602

Dig 16 In 24 Vdc SinkBMX DDI 1602
35012430 01 November 2007 149

Installing the application using Unity Pro
Serial port
configuration

The table below shows the procedure for configuring the serial port of the processor
as Modbus slave:

Step Action

1 In the Project browser double-click on Configuration then on 0: BMS XBP 0800 then on
0: BMX P34 2010. Then double click on Serial Port to access to the 0:0 Serial Port window.

2 Select the Slave type.

3 Select 9600 for transmission speed.

4 Select RS232 for physical line.

5 Select RTU (8bits) for data type.

6 Close the window and confirm with OK.

0.0 : Serial Port

Serial port

Channel 0

Task :
MAST

Function :

Config

 Transmission speed
9600

RS232

Master
Number of retries 0

Physical line Physical line

RS485

RX/TX

RX/TX +
RTS/CTS
RX/TX +
RTS/CTS+
DTR/DSR/DCD

RX/TX +
RTS/CTS+
DTR/DSR/DCD

Delay between characters
 Default 4 ms

Data Stop

RTU (8 bits)
ASCII (7 bits) 1 bit

2 bits

Parity
Even NoneOdd

0 x 100 msx 100 ms

RTS/CTS delayRTS/CTS delay

Modbus link

Slave
Type

Number of retries

Number of retries 1Number of retries x 10 msx 10 ms

Slave
Slave number 1
150 35012430 01 November 2007

Installing the application using Unity Pro

7 Do the same for the second processor:
Type: Slave,
Slave number: 2,
Transmission type: 9600,
Data type: RTU (8 bits),
Stop bit: 1,
Parity: even.

Step Action

Note: In order for changes to be made from one protocol to another, the processor
must initially be configured to Modbus Slave mode.
35012430 01 November 2007 151

Installing the application using Unity Pro
Declaration of variables

At a glance All of the variables used in the different sections of the program must be declared.

Undeclared variables cannot be used in the program.

Procedure for
declaring
variables

The table below shows the procedure for declaring application variables:

Note: For more information, see Unity Pro online help (click on ?, then Unity,
then Unity Pro, then Operate modes, and Data editor).

Step Action

1 In Project browser / Variables & FB instances, double-click on
Elementary variables

2 In the Data editor window, select the box in the Name column and enter a
name for your first variable.

3 Now select a Type for this variable.

4 When all your variables are declared, you can close the window.
152 35012430 01 November 2007

Installing the application using Unity Pro
Variables used
for the
application

The following table shows the details of the variables used in the application:

Variable Type Definition

Adr_Char STRING Master PLC serial port address.

Adr_modbus STRING Modbus Slave PLC serial port address.

AnsString1 STRING First modem answer character string.

AnsString2 STRING Second modem answer character string.

AnsString3 STRING Third modem answer character string.

Error INT Function error code.

Function_Step INT Function step.

MngtInput ARRAY[0..3] of INT Array of the communication parameters for
the INPUT_CHAR block.

MngtPrint ARRAY[0..3] of INT Array of the communication parameters for
the PRINT_CHAR block.

MngtWrite ARRAY[0..3] of INT Array of the communication parameters for
the WRITE_VAR block.

nb_charac_to_receive_
connect

INT Number of character to receive: modem
connexion

nb_charac_to_receive_
ok

INT Number of character to receive: modem
confirmation message

ReqString STRING Modem answer.

run EBOOL Running mode.

Serial_Port T_COM_MB_BMX Serial port I/O object

Test_inc INT Incrementation value
35012430 01 November 2007 153

Installing the application using Unity Pro
The following screen shows the application variables created using the data editor:

Variables

EDTName
Filter

DDT IODDT*

Data Editor

Name Type Addre... Comment

AnsString3 STRING

Value

Error INT

0.0.0

DDT types Function blocks DFB types

MngtPrint
MngtInput

ARRAY[0..3] of INT
ARRAY[0..3] of INT

Function_Step INT

STRINGAdr_Char

MngtWrite ARRAY[0..3] of INT

Adr_modbus STRING 0.0.0.2
AnsString1 STRING
AnsString2 STRING

ReqString STRING
Run BOOL

Test_inc INT

nb_bit_to_receive_connect INT 9
nb_bit_to_receive_ok INT 4

Serial_Port T_COM_MB_BMX %CH.0.0.0
%I.0.1.0
154 35012430 01 November 2007

Installing the application using Unity Pro
Declaring an
Array type

Before declaring an Array type, click on Tools/Project Settings/Language
extension then check "Directly represented array variables" and "Allow dynamic
arrays"

The following table shows how to declare an Array type:

Allow usage of EBOOL edge

Data types

Allow INT / DINT in place of ANY_BIT
Allow bit extraction of INT & WORD
Directly represented array variables
Allow dynamic arrays
[ANY_ARRAY_XXX]
Directly represented array variables

Step Action

1 In the Project browser, click on Variables & FB instances.

2 Click in the Name column and enter a name for the variable.

3
Double-click in the Type column and then click on the button.
The Variable Type Selection window opens:

4 Choose the desired variable type (INT for example), then click into the Array checkbox.

...

Variables types

Name DDT IODDT

Data Editor : Variable Type Selection

STRING

*

Librairies/Families
<Application>
<EDT>
<Libset>
<Catalog>

Name Type Comment
WORD
UINT
UDINT
TOD
TIME
STRING
REAL
INT
EBOOL

<EDT>
<EDT>
<EDT>
<EDT>
<EDT>
<EDT>
<EDT>
<EDT>
<EDT>

Array

CancelOK

Array (0..1) OF INT
35012430 01 November 2007 155

Installing the application using Unity Pro
Declaration of I/O
object

The table below shows the procedure for declaring the I/O Derived Variables.

5 Modify the intervalle, then confirm with OK.

Step Action

Step Action

1 In the 0:0 Serial Port window, click on Serial Port and then on the I/O
objects tab.

2 Click on the I/O object prefix address %CH then on the Update grid button, the
channel address appears in the I/O object grid.

3 Click on the line %CH0.0.0 and then, in the I/O object creation windows,
enter a channel name in the prefix for name zone ("Serial_Port" for example).

4 Now click on different Implicit I/O object prefix addresses then on update grid
button to see the names and addresses of the implicit I/O objects.

Overview I/O objects

%CH0.0.0
%MW0.0.0

1

%MW0.0.0.1
2

%MW0.0.0.2
3

%MW0.0.0.3
4

%MW0.0.0.4
5

%MW0.0.0.5
6
7

Address

Prefixe for name:
Type:

Comment:

CreateCreate

Channel:
Configuration
System
Status
Parameter
Command
Implicits %I

%Q

%CH

%QW
%IW

%MW
%MW

%MW
%MW

%KW

%QD
%ID

%MD
%MD

%KD

%QF
%IF

%MF
%MF

%KF Select all

Unselect all

I/O object

I/O variable creation

Update

Update grid

Filter on usage

Serial_Port
Serial_Port.EXCH_
Serial_Port.EXCH_
Serial_Port.CH_F
Serial_Port.PROT

Name

%ERR

%MW0.0.0.6
%MW0.0.0.7

8

%MW0.0.0.8
9

%MW0.0.0.9
10

%MW0.0.0.10
11

%MW0.0.0.11
12

%MW0.0.0.12
13
14

%MW0.0.0.13
%MW0.0.0.14

15

%MW0.0.0.15
16

%MW0.0.0.16
17

%MW0.0.0.17
18

%MW0.0.0.18
19

%MW0.0.0.19
20
21

%MW0.0.0.20
%MW0.0.0.21

22

%MW0.0.0.22
23

%MW0.0.0.23
24

%MW0.0.0.24
25
26 Serial_Port.CONT
156 35012430 01 November 2007

Installing the application using Unity Pro
Using a modem

Description It is necessary to know three commands to interface telephonic modems to PLCs.
These commands are the following:

initialize modem,
renumerate,
disconnect modem.

It is imperative to send an initialization message followed by a dial message to the
modem before sending it an ASCII or Modbus message.

When the connection is successful between the two modems, you may send an
unlimited number of ASCII or Modbus messages.

When all the messages have been sent, you must send the disconnection string to
the modem.

Initializing the
modem

The two modems must be configured with the same characteristics as the serial
ports:

data rate: 9600 bauds,
character frame: 8 bits / parity even / 1 stop bit,
line modulation: V32.

Then define ‘’+’’ as escape character (command: ATS2=43).

Example of initializing command:

ATQ0&Q0E0&K0V1

with:

Q0: enable the result code
&Q0: DTR is always assumed (ON),
E0: disable the echo of characters,
&K0: no flow control,
V1: word result codes.

Dialing the
modem

The dial message is used to send the telephone number to the modem.

Only AT commands relating to dialing should be included in the message.

Example:

Frequency dialing: ATDT6800326<CR><LR>
Pulse dialing: ATDP6800326<CR><LF>
Frequency dialing with tone waiting: ATDTW6800326<CR><LF>
35012430 01 November 2007 157

Installing the application using Unity Pro
Disconnecting
the modem

The modem is first switched back to the Command Mode by receiving the escape
character three times.

Then, the disconnect command "ATH0" can be send.

Escape sequence: "+++" (modem result code: OK),

Disconnect command: "ATH0" (modem result code: OK).
158 35012430 01 November 2007

Installing the application using Unity Pro
Procedure for programming

Procedure to
follow

The array below shows the procedure for programming the application.

Step Action Details

1 Preparing the
communication port.

Change the Slave Modbus mode to Character
mode by sending a WRITE_CMD (See Writing
the command words, p. 160) to the serial port.
For a modem transmission , send the HAYES
command by using the PRINT_CHAR block to
configure the modem (See Using a modem,
p. 157).
For a modem transmission , send the HAYES
command by using the PRINT_CHAR block. The
dial message is used to send a telephone
number to the modem (See Using a modem,
p. 157).

2 Master Modbus mode Switch to Modbus Master mode using the
WRITE_CMD function.
Send data to write on the Slave PLC.

3 Reseting the
communication port.

Switch to Character mode using the
WRITE_CMD command (See Writing the
command words, p. 160).
For a modem transmission, send the escape
character, then send the disconnect command
to send a disconnection message to the modem
(See Using a modem, p. 157) by using the
PRINT_CHAR block.
Return to the starting mode of the serial port
(Slave Modbus) using the WRITE_CMD
command (See Writing the command words,
p. 160).
35012430 01 November 2007 159

Installing the application using Unity Pro
Writing the
command words

The following steps should be executed to send a WRITE_CMD to a communication
port:

Step Action Detail

1 Test to determine
whether any command is
pending.

Before executing a WRITE_CMD, test whether an
exchange is currently in progress using the
EXCH_STS language object (%MWr.m.c.0). To
refresh this word, use the READ_STS block.

2 Assign the command
word.

You must next modify the value of the command
language object in order to perform the required
command. For a Modbus link, the object language
is the internal word CONTROL (%MWr.m.c.24).
For example, to switch from Modbus mode to
character mode, the bit 14 of the word
%MWr.m.c.24 is set to 1.
Note: A single command bit must then be switched
from 0 to 1 before transmitting the WRITE_CMD.

3 Send the command Finally, a WRITE_CMD must be executed to
acknowledge the command.
160 35012430 01 November 2007

Installing the application using Unity Pro
Programming structure

Steps comments

Step
number

Step description Element

0 Initial state of function
Wait for change to 1 of run bit to go to step 5.

Modem

5 Switch to Character mode.
Go to step 10.

10 Read status of serial port.
If there is an error on the serial port then

Error is a 10
Go to step 130

If there is no error on the serial port
and Character mode is active, then go to step 15
and no Character mode active, then test the
status of change to Master Modbus mode on
1000 cycles, then error is at 10, and go to step
130.

15 Sending a dial command to the modem via the
PRINT_CHAR.
Go to step 20.

20 If the result of PRINT_CHAR is conclusive then go to
step 25 otherwise go to step 130 with Error at 20.

25 Waiting for the response of the modem via the
INPUT_CHAR.

30 If the result of INPUT_CHAR is conclusive then go to
step 35 otherwise go to step 130 with Error at 30.

35 If the modem correctly responds then go to step 40
otherwise go to step 130 with Error at 35.
35012430 01 November 2007 161

Installing the application using Unity Pro
40 Switch to Master Modbus mode.
Go to step 45.

Master Modbus Mode

45 Read status of serial port.
If there is an error on the serial port then

Error is a 45
Go to step 130

If there is no error on the serial port
and Master Modbus mode is active, then go to
step 50
and no Master Modbus mode active, then test
the status of change to Master Modbus mode on
1000 cycles, then error is at 45, and go to step
130.

50 Initialization of WRITE_VAR block parameter.
Send data to write on the PLC using the WRITE_VAR
function.
Go to step 55.

Write function

55 If the result of WRITE_VAR is conclusive then go to
step 65 otherwise go to step 130 with Error at 55.

60 Switch to Character mode.
Go to step 65

Character mode

65 Read status of serial port.
If there is an error on the serial port then

Error is a 65
Go to step 130

If there is no error on the serial port
and Character mode is active, then go to step 70
and no Character mode active, then test the
status of change to Character mode on 1000
cycles, then error is at 65, and go to step 130.

Step
number

Step description Element
162 35012430 01 November 2007

Installing the application using Unity Pro
70 Sending an escape character to the modem using the
PRINT_CHAR block.
Go to step 75.

Modem

75 If the result of PRINT_CHAR is conclusive then go to
step 80 otherwise go to step 130 with Error at 75.

80 Read response from the modem using an
INPUT_CHAR

85 If the result of INPUT_CHAR is conclusive then go to
step 90 otherwise go to step 130 with Error at 85.

90 If the modem correctly responds then go to step 95
otherwise go to step 130 with Error at 90.

95 Sending a disconnection command to the modem using
the PRINT_CHAR block.
Go to step 100.

100 If the result of PRINT_CHAR is conclusive then go to
step 100 otherwise go to step 130 with Error at 100.

105 Read response from the modem using an
INPUT_CHAR

110 If the result of INPUT_CHAR is conclusive then go to
step 115 otherwise go to step 130 with Error at 110.

115 If the modem correctly responds then go to step 120
otherwise go to step 130 with Error at 115.

120 Switch to Slave Modbus mode.
Go to step 130

Slave Modbus mode

125 Read status of serial port.
If there is an error on the serial port then

Error is at 125
Go to step 130

If there is no error on the serial port
and Slave Modbus mode is active, then go to
step 130
and no Character mode active, then test the
status of change to Character mode on 1000
cycles, then error is at 125, and go to step 130.

130 Return to step 0.

Step
number

Step description Element
35012430 01 November 2007 163

Installing the application using Unity Pro
Programming

Programming in
ST language.

The example is programmed in ST structured litteral language. The dedicated
section is under the same master task (MAST).

CASE Function_Step OF

0: (* Initialization *)

 IF (run) THEN (* trigger flag *)

 Error := 0;

 Function_Step := 5; (* next step *)

 END_IF;

5: (* Send command to switch serial port from Slave Modbus mode to Character
mode *)

 READ_STS(Serial_port); (* read serial port status *)

 IF (Serial_port.EXCH_STS = 0) THEN (* no active command *)

 Serial_port.CONTROL := 16#00; (* reset control word *)

 (* set TO_CHAR_MODE command bit *)

 SET(Serial_port.TO_CHAR_MODE);

 WRITE_CMD (Serial_port); (* send command *)

 Test_inc := 0; (* initialize retry counter *)

 Function_Step := 10; (* next step *)

 END_IF;

10: (* Test result of switch command to Character mode*)

 READ_STS(Serial_port); (* read serial port status *)

 IF (Serial_port.EXCH_STS = 0) THEN (* command completed *)

 (* TO_CHAR_MODE command bit *)

 RESET(Serial_port.TO_CHAR_MODE);

 IF (Serial_port.EXCH_RPT = 0) THEN (* no error *)

 IF (AND(Serial_port.PROTOCOL, 16#0F) = 03)

 THEN (* Character mode OK *)

 Function_Step := 15; (* next step *)

 ELSE
164 35012430 01 November 2007

Installing the application using Unity Pro
 test_inc := test_inc + 1;

 IF (test_inc > 1000) THEN

 Error := 10; (* error *)

 Function_Step := 130; (* next step = end *)

 END_IF;

 END_IF;

 ELSE (* error in sending command to port *)

 Error := 10; (* error *)

 Function_Step := 130;

 END_IF;

 END_IF;

15: (* Send dial command to modem *)

 (*Phone number must be inserted between ‘ATDT’ and ‘$N’*)

 ReqString := 'ATDT4001$N'; (* dial message *)

 MngtPrint[2] := 500; (* timeout *)

PRINT_CHAR(ADDM(Adr_Char), ReqString, MngtPrint);

 Function_Step := 20;

20: (* Test PRINT_CHAR function result *)

 IF (NOT MngtPrint[0].0) THEN

 IF (MngtPrint[1] = 0) THEN

 Function_Step := 25; (* success : next step *)

 ELSE

 Error := 20; (* error *)

 Function_Step := 130; (* next step = end *)

 END_IF;

 END_IF;

25: (* Waiting for the response via INPUT_CHAR *)

 MngtInput[2] := 500; (* timeout *)

 AnsString1:=' ';

 (* wait modem reply *)
35012430 01 November 2007 165

Installing the application using Unity Pro
 INPUT_CHAR(ADDM(Adr_Char), 1, nb_charac_to_receive_connect, MngtInput,
AnsString1);

 Function_Step := 30; (* next step *)

30: (* Test INPUT_CHAR function result *)

 IF (NOT MngtInput[0].0) THEN

 IF (MngtInput[1] = 0) THEN

 Function_Step := 35; (* success : next step *)

 ELSE

 Error := 30; (* error *)

 Function_Step := 130; (* next step = end *)

 END_IF;

 END_IF;

35: (* Test Modem reply *)

 IF (AnsString1 = '$NCONNET') THEN

 Function_Step := 40; (* success : next step *)

 ELSE

 Error := 35; (* error *)

 Function_Step := 130; (* next step = end *)

 END_IF;

40: (* Send command to switch serial port from character mode to Modbus Master *)

 READ_STS(Serial_port); (* read serial port status *)

 IF (Serial_port.EXCH_STS = 0) THEN (* no active command *)

 Serial_port.CONTROL := 16#00; (* reset control word *)

 (* set TO_MODBUS_MASTER command bit *)

 SET(Serial_port.TO_MODBUS_MASTER);

 WRITE_CMD (Serial_port); (* send command *)

 Test_inc := 0; (* initialize retry counter *)

 Function_Step := 45; (* next step *)

 END_IF;

45: (* Test result of switch command to Modbus Master mode*)
166 35012430 01 November 2007

Installing the application using Unity Pro
 READ_STS(Serial_port); (* read serial port status *)

 IF (Serial_port.EXCH_STS = 0) THEN (* command completed *)

 (* TO_MODBUS_MASTER command bit *)

 RESET(Serial_port.TO_MODBUS_MASTER);

 IF (Serial_port.EXCH_RPT = 0) THEN (* no error *)

 IF (AND(Serial_port.PROTOCOL, 16#0F) = 06)

 THEN (* Modbus Master mode OK *)

 Function_Step := 50; (* next step *)

 ELSE

 test_inc := test_inc + 1;

 IF (test_inc > 1000) THEN

 Error := 45; (* error *)

 Function_Step := 130; (* next step = end *)

 END_IF;

 END_IF;

 ELSE (* error in sending command to port *)

 Error := 45; (* error *)

 Function_Step := 130;

 END_IF;

 END_IF;

50: (*Write information in the second CPU*)

 Mngtwrite[2]:=50; (* time outs*)

 %MW40:=5; (* value to send *)

 WRITE_VAR(ADDM('0.0.0.2'),'%MW',100,2,%MW40:2,Mngtwrite);

 Function_Step := 55;

55: (* Test WRITE_VAR function result *)

 IF (NOT Mngtwrite[0].0) THEN

 IF (Mngtwrite[1] = 0) THEN

 Function_Step := 65; (* success : next step *)

 ELSE

 Error := 55; (* error *)
35012430 01 November 2007 167

Installing the application using Unity Pro
 Function_Step := 130; (* next step = end *)

 END_IF;

 END_IF;

60: (* Send command to switch serial port from Modbus to character mode *)

 READ_STS(Serial_port); (* read serial port status *)

 IF (Serial_port.EXCH_STS = 0) THEN (* no activecommand *)

 Serial_port.CONTROL := 16#00; (* reset control word *)

 (* set TO_CHAR_MODE command bit *)

 SET(Serial_port.TO_CHAR_MODE);

 WRITE_CMD (Serial_port); (* send command *)

 test_inc := 0; (* initialize retry counter *)

 Function_Step := 65; (* next step *)

 END_IF;

65: (* Test result of switch command *)

 READ_STS(Serial_port); (* read serial port status *)

 IF (Serial_port.EXCH_STS = 0) THEN (* command completed *)

 (* reset TO_CHAR_MODE command bit *)

 RESET(Serial_port.TO_CHAR_MODE);

 IF (Serial_port.EXCH_RPT = 0) THEN (* no error *)

 IF (AND(Serial_port.PROTOCOL, 16#0F) = 03)

 THEN (* character mode OK *)

 Function_Step := 70; (* next step *)

 ELSE

 test_inc := test_inc + 1;

 IF (test_inc > 1000) THEN

 Error := 65; (* error *)

 Function_Step := 130; (* next step = end *)

 END_IF;

 END_IF;

 ELSE (* error in sending command to port *)

 Error := 65; (* error *)
168 35012430 01 November 2007

Installing the application using Unity Pro
 Function_Step := 130; (* next step = end *)

 END_IF;

 END_IF;

70: (* Hangup modem: step 1*)

 ReqString := '+++'; (* escape sequence *)

 PRINT_CHAR(ADDM(Adr_Char), ReqString, MngtPrint);

 Function_Step := 75; (* next step *)

75: (* Test PRINT_CHAR function result *)

 IF (NOT MngtPrint[0].0) THEN

 IF (MngtPrint[1] = 0) THEN

 (* Success : next step *)

 Function_Step := 80;

 ELSE

 (* End on error *)

 Error := 75;

 Function_Step := 130;

 END_IF;

 END_IF;

80:

 MngtInput[2] := 50; (* timeout *)

 INPUT_CHAR(ADDM(Adr_Char), 1, nb_charac_to_receive_ok, MngtInput,
AnsString2); (*Wait modem reply*)

 Function_Step := 85; (*next step*)

85: (* Test INPUT_CHAR function result *)

 IF (NOT MngtInput[0].0) THEN

 IF (MngtInput[1] = 0) THEN

 (* Success : next step *)

 Function_Step := 90;

 ELSE

 (* End on error *)
35012430 01 November 2007 169

Installing the application using Unity Pro
 Error := 85;

 Function_Step := 130;

 END_IF;

 END_IF;

90: (* Test Modem reply *)

 IF (AnsString2 = '$NOK') THEN

 Function_Step := 95; (* success : next step *)

 ELSE

 Error := 90; (* error *)

 Function_Step := 130; (* next step = end *)

 END_IF;

95: (* Hangup modem: step 2 *)

 ReqString := 'ATH0$N'; (* hangup message *)

 PRINT_CHAR(ADDM(Adr_Char), ReqString, MngtPrint);

 Function_Step := 100; (* next step *)

100: (* Test PRINT_CHAR function result *)

 IF (NOT MngtPrint[0].0) THEN

 IF (MngtPrint[1] = 0) THEN

 (* Success : next step *)

 Function_Step := 105;

 ELSE

 (* End on error *)

 Error := 100;

 Function_Step := 130;

 END_IF;

 END_IF;

105:

 MngtInput[2] := 50; (* timeout *)

 INPUT_CHAR(ADDM(Adr_Char), 1, nb_charac_to_receive_ok, MngtInput,
AnsString3); (*Wait modem reply*)
170 35012430 01 November 2007

Installing the application using Unity Pro
 Function_Step := 110; (*next step*)

110: (* Test INPUT_CHAR function result *)

 IF (NOT MngtInput[0].0) THEN

 IF (MngtInput[1] = 0) THEN

 (* Success : next step *)

 Function_Step := 115;

 ELSE

 (* End on error *)

 Error := 110;

 Function_Step := 130;

 END_IF;

 END_IF;

115: (* Test Modem reply *)

 IF (AnsString3 = '$NOK') THEN

 Function_Step := 120; (* success : next step *)

 ELSE

 Error := 115; (* error *)

 Function_Step := 130; (* next step = end *)

 END_IF;

120: (* Send command to switch serial port from Character mode to Slave Modbus
mode *)

 READ_STS(Serial_port); (* read serial port status *)

 IF (Serial_port.EXCH_STS = 0) THEN (* no activecommand *)

 Serial_port.CONTROL := 16#00; (* reset control word *)

 (* set TO_MODBUS_SLAVE command bit *)

 SET(Serial_port.TO_MODBUS_SLAVE);

 WRITE_CMD (Serial_port); (* send command *)

 test_inc := 0; (* initialize retry counter *)

 Function_Step := 125; (* next step *)

 END_IF;
35012430 01 November 2007 171

Installing the application using Unity Pro
125: (* Test result of switch command *)

 READ_STS(Serial_port); (* read serial port status *)

 IF (Serial_port.EXCH_STS = 0) THEN (* command completed *)

 (* reset TO_MODBUS_SLAVE command bit *)

 RESET(Serial_port.TO_MODBUS_SLAVE);

 IF (Serial_port.EXCH_RPT = 0) THEN (* no error *)

 IF (AND(Serial_port.PROTOCOL, 16#0F) = 07)

 THEN (* character mode OK *)

 Function_Step := 130; (* next step *)

 ELSE

 test_inc := test_inc + 1;

 IF (test_inc > 1000) THEN

 Error := 125; (* error *)

 Function_Step := 130; (* next step = end *)

 END_IF;

 END_IF;

 ELSE (* error in sending command to port *)

 Error := 125; (* error *)

 Function_Step := 130; (* next step = end *)

 END_IF;

 END_IF;

130: (* End *)

 Run := 0; (* allow new demand *)

 Function_Step := 0; (* goto waiting state *)

END_CASE;
172 35012430 01 November 2007

35012430 01 November 2007
11

Starting the Application
Execution of Application in Standard Mode

At a glance Standard mode working requires the use of a PLC, a discrete input module and 2
SR1MOD01 modems.

First Slave PLC
Wiring

The first Slave PLC is connected as follow:

PLC

Phone Line

Actuator (1)

TCS-MCN-3M4MS2

(1): the actuator is connected on the channel 0 of the discrete module.

Modem
173

Starting the application
Second Slave
PLC Wiring

The second Slave PLC is connected as follow:

Application
transfer

Before transferring the application, verify that the first Slave PLC is not connected to
the modem.

The table below shows the procedure for transfer the application in standard mode:

Slave PLC

Phone Line

TCS-MCN-3M4MS2

Modem

Step Action

1 In the PLC menu, click on Standard Mode,

2 In the Build menu, click on Rebuild All Project. Your project is
generated and is ready to be transferred to the PLC. When you generate the
project, you will see a results window. If there is an error in the program, Unity
Pro indicates its location if you click on the highlighted sequence.

3 In the PLC menu, click on Connection. You are now connected to the PLC.

4 In the PLC menu, click on Transfer project to PLC. The Transfer
project to PLC window opens. Click on Transfer. The application is
transferred to the PLC.
174 35012430 01 November 2007

Starting the application
Application
execution

The table below shows the procedure for execute the application in standard mode:

Step Action

1 In the PLC, click on Execute. The Execute window opens. Click on OK. The
application is now being executed (in RUN mode) on the PLC.

2 Disconnect the PC which is running Unity Pro software from the first Slave
PLC.

3 Connect the first Slave PLC to a SR2MOD01 modem.
35012430 01 November 2007 175

Starting the application
176 35012430 01 November 2007

CBAIndex
B
BMXP341000, 17
BMXP342010, 17
BMXP342020, 17

C
changing protocols, 135
channel data structure for all modules

T_GEN_MOD, 132
channel data structure for character mode
communication

T_COM_CHAR_BMX, 126, 127
channel data structure for communication
protocols

T_COM_STS_GEN, 113, 114
channel data structure for modbus
communication

T_COM_MB_BMX, 118, 119
character mode, 77
configuring character mode, 82
configuring Modbus, 52
connection devices, 23

D
debugging character mode, 98
debugging Modbus, 74
35012430 01 November 2007
I
INPUT_CHAR, 92

M
Modbus bus, 43

P
parameter settings, 103
PRINT_CHAR, 92
programming character mode, 92
programming Modbus bus, 65

Q
quick start, 139

T
T_COM_CHAR_BMX, 126, 127
T_COM_MB_BMX, 118, 119
T_COM_STS_GEN, 113, 114
T_GEN_MOD, 132

W
wiring accessories, 34
177

Index
178
 35012430 01 November 2007

	Modicon M340 with Unity Pro
	Table of Contents
	Safety Information
	About the Book

	Introduction to Modbus and Character Mode Communications
	Introduction to Modbus and Character Mode Communications
	Hardware Installation for Modbus and Character Mode Communications
	Introduction to Serial Communications on the BMX�P34�1000/2010/2020 Processors
	Serial Communications Architectures
	Software Implementation of Modbus and Character Mode Communications
	Installation Methodology
	Software Implementation of Modbus Communication
	General
	Modbus Communication Configuration
	Modbus Communication Programming
	Debugging Modbus Communication

	Software Implementation of Communication Using Character Mode
	General
	Character Mode Communication Configuration
	Character Mode Communication Programming
	Debugging Character Mode communication

	Language Objects of Modbus and Character Mode Communications
	Language Objects and IODDTs of Modbus and Character Mode Communications
	General Language Objects and IODDTs for All Communication Protocols
	Language Objects and IODDTs Associated with Modbus Communication
	Language Objects and IODDTs associated with Character Mode Communication
	The IODDT Type T_GEN_MOD Applicable to All Modules

	Dynamic Protocol Switching
	Quick start : example of Serial link implementation
	Description of the application
	Installing the application using Unity Pro
	Presentation of the solution used
	Developping the application

	Starting the Application
	Index

