35013944 01

Modicon M340 with Unity Pro

CANopen
User manual

November 2007 eng

Schneider
g Electric

35013944 01 November 2007

Table of Contents

Part |

Chapter 1

Part Il

Chapter 2

Chapter 3

Part Il

Safety Information 7
Aboutthe BooK. 9
Overview of CANopen Communication............. 11
AtaGlance 11
Overview of CANopen Communication 13
AtaGlance 13
PrinCiples. e 14
CAN Ata Glance. o 15
General Architecture of the CANopen FieldBus. 18
TOPOIOGY - . o e 20
Length Limitations of the CANopen Network 23
Conformity Class.o 25
CANopen Hardware Implementation 27
AtaGlance 27
Hardware Implementation of BMX P34 Processors 29
AtaGlance 29
Description of Processors: BMX P34 2010/2030, 30
Installation. 32
Visual Diagnostics of CANopen Processors. 33
Presentation of CANopen devices 37
AtaGlanCe 37
CANOPEN DEVICES . . . o it ittt e e e e 38
CANopen motion command deviCesS.ttt 39
CANopen Input/Output deviCes.ottt e e 45
Other DeVICESttt e e e 49

Software Implementation of CANopen Communication 57
Ata GlanCe 57

35013944 01 November 2007

Chapter 4

Chapter 5
5.1

5.2

5.3

54

Chapter 6

Chapter 7

Chapter 8

Generalities e 59
Ata GlanCe 59
Implementation Principle 60
Implementation Method e 62
Performances. e 63

Configuration of Communication on the CANopen Bus 65

AtaGlance 65
General PoINtS 66
Generalities 66
Bus Configuration e 67
AtaGlance 67
How to Access the CANopen Bus Configuration Screen. 68
CANoOpen Bus EditOr e 69
Howto AddaDeviceonthe BUuS.t 70
How to Delete/Move/Duplicate a Bus Device, 72
View CANopen Bus inthe Project Browser. 74
Device Configurationt e 75
AtaGlance 75
Slave FUNCLIONS e 76
Configuration Using Unity e 79
Configuration Using an External Tool: Configuration Software 85
Manual Configuration. i e 89
Master Configuration i 91
AtaGlance 91
How to Access the CANopen Master Configuration Screen 92
CANopen Master Configuration Screen. 94
Description of Master Configuration Screen 96
Programming i i 99
AtaGlance 99
Exchanges Using PDOS i e e 100
Exchanges Using SDOS ot e 105
Communication functionsexemple i 108
Modbus request example. 115
Debugging Communication on the CANopen Bus........ 117
AtaGlance e 117
How to Access the Debug Screens of Remote Devices 118
Debugging Screen of the CANopen Master. 119
Slave DebUQ SCreens oot e 121
DiagnoStiCS. . . oot e 125
AtaGlance 125
How to performadiagnostic it 126
Master DiagnoStiCSo vttt e 127

35013944 01 November 2007

Chapter 9

9.1

9.2

9.3

9.4

9.5

Part IV
Chapter 10

Chapter 11

111

11.2

Slave DiagnostiCso oot e 128

Language Objects. i e 131
AtaGlance 131
Language objects and IODDT for CANopen communication 132
AtaGlance e 132
Introduction to the Language Objects for CANopen Communication 133
Implicit Exchange Language Objects Associated with the Application-Specific
FUNCHON .. 134
Explicit Exchange Language Objects Associated with the Application-Specific
FUNCHON .. 135
Management of Exchanges and Reports with Explicit Objects. 137
Language Objects and Generic IODDT Applicable to All Communication Protocols
... 139
AtaGlance 139

Details of IODDT Implicit Exchange Objects of Type T_COM_STS_GEN. ... 140
Details of IODDT Explicit Exchange Objects of Type T_COM_STS_GEN. ... 141
Language Object of the CANopen Specific IODDT 143
AtaGlanCe 143
Details of T_COM_CO_BMX Type Implicit Exchange Objects of the IODDT. . 144
Details of T_COM_CO_BMX Type Explicit Exchange Objects of the IODDT. . 156

Language Objects Associated with Configuration. 158
Emergency objects 159
Emergency Objects. 159
The IODDT Type T_GEN_MOD Applicable to All Modules 163
Details of the Language Objects of the IODDT of Type T_GEN_MOD. 163

Quick start : example of CANopen implementation .. 165

Ataglance 165
Description of the application......................... 167
Overview of the application. 167
Installing the application using Unity Pro 171
Ataglance 171
Presentation of the solutionused 173
Ataglance e 173
Technological choicesused i, 174
The different steps in the process using Unity Pro 175
Developping the application 176
Ataglance e 176
Creatingthe project. i e 177
Configuration of the CANopenBuUS. 178
Configuration of the CANopen Master ciiiiinennn... 182
Configuration of the equipments 184
Declaration of variables. 188

35013944 01 November 2007

Chapter 12

Appendices

Appendix A

Appendix B

Appendix C

Glossary

Index

Creating the program in SFC for managing the move sequence. 192

Creating a Program in LD for Application Execution 197
Creating a Program in LD for the operator screen animation 199
Creating a program in ST for the Lexium configuration. 200
Creating an Animation Table i 203
Creating the Operator SCreenttt e e e 205
Starting the Application 209
Execution of Application in StandardMode. 209
.. 217
Ataglance. 217
CANopen Master local object dictionary entry 219
Ataglance. 219
Object Dictionary entries according Profile DS301 220
Object Dictionary entries according Profile DS302 225
Midrange Manufacturer Specific Object Dictionary Entries 227
Relation between PDOs and STB variables 235
STBisland configuration 235
Actions and transitions. 239
Ataglance. 239
TranSItioNS 240
ACHONS . . o o 241
.. 243
.. 247

35013944 01 November 2007

Safety Information

Important Information

NOTICE Read these instructions carefully, and look at the equipment to become familiar with
the device before trying to install, operate, or maintain it. The following special
messages may appear throughout this documentation or on the equipment to warn
of potential hazards or to call attention to information that clarifies or simplifies a
procedure.

The addition of this symbol to a Danger or Warning safety label indicates

that an electrical hazard exists, which will result in personal injury if the
instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal
injury hazards. Obey all safety messages that follow this symbol to avoid
possible injury or death.

Il DANGER

DANGER indicates an imminently hazardous situation, which, if not avoided, will
result in death or serious injury.

WARNING

WARNING indicates a potentially hazardous situation, which, if not avoided, can result
in death, serious injury, or equipment damage.

CAUTION

CAUTION indicates a potentially hazardous situation, which, if not avoided, can result
in injury or equipment damage.

35013944 01 November 2007

Safety Information

PLEASE NOTE Electrical equipment should be installed, operated, serviced, and maintained only by
qualified personnel. No responsibility is assumed by Schneider Electric for any

consequences arising out of the use of this material.
© 2007 Schneider Electric. All Rights Reserved.

35013944 01 November 2007

About the Book

At a Glance

Document Scope

Validity Note

Product Related
Warnings

This manual describes the implementation of a CANopen network on PLCs of the
Modicon M340 range.

The data and illustrations found in this documentation are not binding. We reserve
the right to modify our products in line with our policy of continuous product
development.

The information in this document is subject to change without notice and should not
be construed as a commitment by Schneider Electric.

WARNING

UNINTENDED EQUIPMENT OPERATION

The application of this product requires expertise in the design and programming
of control systems. Only persons with such expertise should be allowed to
program, install, alter, and apply this product.

Follow all local and national safety codes and standards.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

Schneider Electric assumes no responsibility for any errors that may appear in this
document. If you have any suggestions for improvements or amendments or have
found errors in this publication, please notify us.

No part of this document may be reproduced in any form or by any means, electronic
or mechanical, including photocopying, without express written permission of
Schneider Electric.

All pertinent state, regional, and local safety regulations must be observed when
installing and using this product.

35013944 01 November 2007

About the Book

For reasons of safety and to ensure compliance with documented system data, only
the manufacturer should perform repairs to components.

When controllers are used for applications with technical safety requirements,
please follow the relevant instructions.

Failure to observe this product related warning can result in injury or equipment
damage.

User Comments We welcome your comments about this document. You can reach us by e-mail at
techpub@schneider-electric.com

10 35013944 01 November 2007

Overview of CANopen
Communication I

At a Glance

Aim of this Part

What's in this
Part?

This part introduces communication on a CANopen field bus.

This part contains the following chapters:

Chapter Chapter Name Page

1 Overview of CANopen Communication 13

35013944 01 November 2007

11

CANopen Network

12

35013944 01 November 2007

Overview of CANopen

Communication 1

At a Glance

Aim of this
Chapter

What's in this
Chapter?

This chapter describes the main technical characteristics for CANopen
communication.

This chapter contains the following topics:

Topic Page

Principles 14
CAN At a Glance 15
General Architecture of the CANopen Field Bus 18
Topology 20
Length Limitations of the CANopen Network 23
Conformity Class 25

35013944 01 November 2007

13

Overview of CANopen Communication

Principles

Introduction

Master/Slave
Structure

Baud Rate

Point to Point
Communication

Design
Principles of the
Bus

Originally developed for onboard automobile systems, the CAN communication bus
is now used in many fields, including:

Transport,

Mobile devices,
Medical equipment,
Construction,
Industrial control.

The strong points of the CAN system are:

e The bus allocation system,
e Error detection,
e Reliability of data exchanges.

The CAN bus has a master/slave bus management structure.
The master manages:

e The initialization of the slaves,
e The communication errors,
e The statuses of the slaves.

The baud rate depends on the length of bus (see Length Limitations of the CANopen
Network, p. 23) and the topology.

Communication on the bus functions point to point.

At any time, each device can send a request to the bus, to which the devices
concerned respond.

The priority of the requests circulating on the bus is determined by an identifier for
each message.

The CANopen bus can evolve in modifying, for example the cable length, by
connecting to additional devices or tap cases.

The following rules must be respected during the design of the CANopen bus:

determine the distance between the nodes furthest from the bus,

verify the length of each segment and the number of nodes connected to it,
verify the length and the density of taps,

verify that all segments have a line termination at each extremity.

14

35013944 01 November 2007

Overview of CANopen Communication

CAN At a Glance

At a Glance

CANopen
protocol

Physical layer

CANopen is a standard Field Bus protocol for industrial monitoring systems. It is
particularly adapted to Real Time PLCs, because it's an efficient, low-cost solution
designed for embedded industrial applications.

The CANopen protocol was designed from a subset of CAL. By profile definition, it's
even more specifically adapted to the use in standard industrial components.
CANopen is a standard o f the CiA (CAN in Automation) Association and that quickly
became known as soon as it was put on the market. In Europe CANopen is now
recognized as the standard reference for industrial systems based on the CAN
concept.

CAN uses a Bus line with two wires controlled in a differential manner (common
return). A CAN signal is the difference between the tension levels of CAN-high and
CAN-low. (See following figure.)

The following figure shows the components of the physical layer of a CAN bus with
two wires :

T o 1l 1

Description

No. Description
CAN-high wire
CAN-low wire

Difference in the potential of CAN-high/CAN-low signals
Resistance block of 120 Q
Cell

AW | N

The Bus wires can be parallel routed, twisted or reinforced according to the
electromagnetic compatibility requirements. A structure with only one line reduces
the reflection.

35013944 01 November 2007

15

Overview of CANopen Communication

CANopen
profiles

Configuration of
devices viathe
CAN bus

General
characteristics
of CAN open
profiles

Certifying
CANopen
products

Communication Profile

The CANopen profile family is based on a ‘communication profile’ that specifies
principal communication mechanisms and their description (DS301).

Device Profile

The most important device types used in the industrial robotics technique are
described in "Device profiles". Their functionalities are also defined there.

Examples of standard devices described are:

the input/output digital and analog distributors (DS401),
(DS402) Motors

Command devices (DSP403),

Loop controllers (DSP404)

PLCs (DS405),

Coding devices (DS406).

The possibility of configuring device using the CAN bus is the basic element of the
independence desired by the manufacturers (by the profile family).

CANopen is a group of profiles for CAN systems, which have the following
specifications:

Open bus system,

Real time data exchange without protocol overload,

Open bus system,

modular conception with the possibility of modifying the size,

Interconnection and interchangeability of devices,

supported by numerous international manufacturers,

Standardized configuration of networks,

access to all the device parameters,

Synchronization and circulation of data with cyclic process and/or commanded by
events (possiblity of reaction time for short systems).

All manufacturers offering CANopen products certified on the market are members
of the Association. As an active member of this Association (CiA),

Schneider Electric Industries SAS develops its products in conformity with
standards recommendations.

16

35013944 01 November 2007

Overview of CANopen Communication

CAN Standards

Communication
on the CANopen
network

The PDO

The SDO

CANopen specifications are defined by the CiA association and are partially
accessible on the site www. can- ci a. com The Source code for master and slaves
are available from various suppliers.

Note: To find out more about CANopen specifications and standard mechanisms,
visit the CiA home page(ht t p/ / www. can- ci a. de).

The communication profile is based on CAL services and protocols. It allows the
user two types of exchange: SDO and PDO: On switch-on, the device goes into
initialization phase, at the end of which it enters pre-operational state. At this stage,
only communication by SDO is allowed. After receiving a start-up order, the device
goes into an operational state. PDO exchanges are then started and communication
by SDO is still possible.

PDO are objects that are the communication interface with process data and allow
Real Time data exchange. All PDO in a CANopen device describe implicit
exchanges between this device and its communication partners on the network.
PDO exchange is authorized as soon as the device is in "Operational" mode.

SDO allow access to device data by explicit requests. The SDO service is available
when the device is in an "Operational” or "Pre-operational” state.

35013944 01 November 2007

17

Overview of CANopen Communication

General Architecture of the CANopen Field Bus

At a Glance A CANopen architecture includes:

e A Bus Master
e Slave devices

Note: The address of the CANopen master is node number 127.

18

35013944 01 November 2007

Overview of CANopen Communication

Architecture The following figure gives an example of CANopen architecture:
Example

c
S .
Altivar o) Lexium

zZ

<

o

L
Advantys FTB Advantys OTB
Te 6 Power

Advantys STB ’

Osicoder

35013944 01 November 2007 19

Overview of CANopen Communication

Topology

Introduction

A CANopen field bus always has a master: the BMX P34 2010/2030 processor.

The bus editor enables you to declare the network devices and to associate them to
a unique address.

There are 2 types of devices:

e compact elements: composed of a single module.
e modular elements: composed of a communicator and one or several modules.

Modular devices can for example be STB islands (see Configuration Using an
External Tool: Configuration Software, p. 85) or OTB devices.

20

35013944 01 November 2007

Overview of CANopen Communication

CANopen
Topology

BMX P34 2010/2030

The devices can be connected to the bus.

e Drop: using nodes connected to a single-port or multi-port shunt box.
e Chaining: with single or double connectors.

Whatever the chosen topology type, length limitations (see Length Limitations of the
CANopen Network, p. 23) must be taken into account.

These limitations concern:

e the bus totality, that is, the maximum distance between 2 nodes,
e Segment length,
e Tap length.

All segments must have a line termination at each extremity.
The following illustration shows an example shunt topology:

FTB

B + NCO 1010

Osicoder

35013944 01 November 2007

21

Overview of CANopen Communication

Line Terminator Itis imperative to put a line termination in the proximity of each bus extremity in order
to minimize reflections at the end of the line.

Each line termination must be connected between lines CAN_Hand CAN_L.
These terminations are resistant to 120Q, 1/4 W 5% resistors.

Note: In some cases the line termination is included in CANopen equipment.

Number of Itis theoretically possible to connect up to 63 devices on the same segment. Despite
Devices in a this, the topology limitations described above mean that in practice the limit is often
Segment inferior. To increase the number of devices on the bus whilst conserving the same

flow rate, it is possible to switch the different segments with a "bridge".
In all cases, an M340 CANopen master cannot handle more than 63 slave devices.

22 35013944 01 November 2007

Overview of CANopen Communication

Length Limitations of the CANopen Network

Introduction

Bus Length

Segment
Lengths

The CANopen network allows you to connect up to 63 devices and a master to the
bus.

Bus lengths, segments and taps are limited and detailed in the tables below.

The data flow rate chosen for the bus determines the maximum length of the
network in its totality:

Baud rate Maximum length
1 Mbit/s 4m
500 Kbit/s 100 m
250 Kbit/s 250 m
125 Kbit/s 500 m

50 Kbit/s 1000 m

20 Kbit/s 2500 m

Note: The bus length must also take into account the use of repeaters that add a
propagation delay for information on the bus. Because repeaters add a
propagation delay in the bus, this delay reduces the maximum network length of
the bus. A propagation delay of 5ns is equal to a length reduction of 1m. A repeater
wtih 150ns delay, for example, would reduce the bus length by 30m.

Independently of the data flow rate, the number of connections and the type of cable
used limit the length of a segment without a repeater.

Resistance Node_16 Node_32 Node_64
Large section 33 Q/km 575m 530 m 460 m
cable
AWG 18
AWG cable:22 70 Q/km 270 m 250 m 215 m
Small section 93 Q/km 205 m 185 m 160 m
cable 88 Q/km 215 m 200 m 170 m
AWG 24
AWG cable:26 157 Q/km 120 m 110 m 95 m

35013944 01 November 2007

23

Overview of CANopen Communication

Drop Lengths

Length limitations concerning stubs have to be taken into account and are fixed by
the following parameters:

Baud rate 1 Mbit/s | 500 Kbit/s | 250 Kbit/s | 125 Kbit/s | 50 Kbit/s | 20 Kbit/s

L max (1) 0.3m 5m 5m 5m 60 m 150 m
ZL max local 0,6 m 10m 10m 10m 120 m 300 m

star (2)

Minimum - 6m 6m 6m 72m 180 m

Interval

0,6xZL local (3)

2L max 1,5m 30m 60 m 120 m 300 m 750 m
on all bus

(1) Limax: Maximum length for one stub.

(2) ZLpay local star: Maximum cumulative length of stubs in the same point when
using a multi-port TAP creating a local star.

(3) Minimum interval: Minimum distance between two TAP. Value for a maximum
length of derivation in the same point. Could be computed case by case for each
derivation: minimum interval between two derivations is 60% of the cumulative
length of derivations at the same point.

(4) ZLax on all bus: Maximum cumulative length of stubs on all the bus.

For more details, consult the document "CANopen, Hardware Implementation
Manual".

24

35013944 01 November 2007

Overview of CANopen Communication

Conformity Class

At a Glance

The CANopen communication port conforms to the Schneider M20 class.

Class M20
Layer configuration Slave identification 1-63
Binary flow (Kbit/s) 50, 125, 250, 500, 1000
Supported Devices 63

NMT

NMT Master

NMT Master conforms to DS301

Boot Procedure

DSP 302 compliant

SDO SDO Client 1

SDO Server 1

SDO Data transfer Sent, segmented transfer
PDO COB-ID Read\write

PDOTT 0, 1-240, 254, 255

PDO Inhibit Time TPDOs (Read\write)

PDO Event Timer TPDOs (Read\write)
SYNC SYNC Production
EMCY Consumer/producer
HEALTH Heartbeat 63 consumers

1 producer

Node guarding yes

Parameters Save parameters. yes

Note: The number of supported PDOs are as follows:
e Receiving 256 (RxPDO)
e 256 Transmitted (TxPDO)

35013944 01 November 2007

25

Overview of CANopen Communication

26

35013944 01 November 2007

CANopen Hardware
Implementation

At a Glance

Subject of this
Part

What's in this
Part?

This part describes the various hardware configuration possibilities of a CANopen
bus architecture.

This part contains the following chapters:

Chapter Chapter Name Page
2 Hardware Implementation of BMX P34 Processors 29
3 Presentation of CANopen devices 37

35013944 01 November 2007

27

CANopen Bus

28

35013944 01 November 2007

Hardware Implementation of

BMX P34 Processors 2

At a Glance

Aim of this This chapter presents BMX P34 processors equipped with a CANopen port as well

Chapter as their implementation.

What's in this This chapter contains the following topics:

2

Chapter Topic Page
Description of Processors: BMX P34 2010/2030 30
Installation 32
Visual Diagnostics of CANopen Processors 33

35013944 01 November 2007 29

CANopen on BMX P34 Processors

Description of Processors: BMX P34 2010/2030

At a Glance Each PLC station is equipped with a BMX P34 sees processor.
There are two processors in the Modicon M340 range that have a CANopen port:

e The BMX P34 2010, which also has a USB port and serial port,
e The BMX P34 2030, which also has a USB port and Ethernet port.

BMX P34 eees processors have a simple design, and include a memory card slot.
The following figures present the front sides of the BMX P34 2010/2030:

oy

> dood

:

BMX P34 2010 BMX P34 2030

Number Designation

Display panel
USB Port.
SD-Card slot

SerialPort
Ethernet Port
CANopen Port

O ||l WIN|F

These processors are bus masters; they cannot function as slaves. They are linked
by SUB-D 9 connector points and allow the connection of slave devices which
support the CANopen protocol.

30 35013944 01 November 2007

CANopen on BMX P34 Processors

Note: There is only one BMX P34 esee master by bus.

35013944 01 November 2007 31

CANopen on BMX P34 Processors

Installation
At a Glance BMX P34 2010/2030 processors equipped with a CANopen port are mounted on
BMX XBP eeee racks fed by BMX CPS e modules.
Note: After an extract/insert of the processor while running, the bus is no longer
operational. In order to restart the bus, the power supply must be re-initialized.
CANopen The CANopen processor port is equipped with a SUB-D9 connection.
Connectors

The following figure represents the CANopen connector for modules (male) and
cables (female).

Male connector Female connector
: 300060

SR eae jo

Pin Signal Description

1 - Reserved

2 CAN_L CAN_L bus line (Low)

3 CAN_GND CAN mass

4 - Reserved

5 Reserved CAN optional protection

6 GND Optional mass

7 CAN_H CAN_H bus line (High)

8 - Reserved

9 Reserved CAN External Power Supply.
(Dedicated to the optocouplers power and transmitters-
receivers.)
Optional

Note: CAN_SHLD and CAN_V+ are not installed on the Modicon M340 range

processors. These are reserved connections.

32 35013944 01 November 2007

CANopen on BMX P34 Processors

Visual Diagnhostics of CANopen Processors

At a Glance

BMX P34 «eee processors form the Modicon M340 range are equipped with several
Module Status visualization LEDs.

BMX P34 2010/2030 processors equipped with a CANopen port have 2 LEDs on
their facade that indicate the bus status:

e agreen CAN RUN LED,
e ared CAN ERR LED.

In normal operation, the CAN ERR LED is off and the CAN RUN LED is on.
The following figures show the LEDs on the facade of modules:

RUN RUN

CAN RUN CAN RUN

SER COM

ETHACT ETHSTS
ETH 100

Visualization screen of BMX P34 2010 Visualization screen of BMX P34 2030

35013944 01 November 2007

33

CANopen on BMX P34 Processors

LED Status

The following trend diagram represents the possible status of LEDs:

On
Rapid flashing
(Initialization duration?3
ff |
S| < 50ms
) On —
Flashing 200 ms | 200 ms
(Pre-operational state)
Off
. On
Single flash 200 ms 1000 ms
(Stopped) off |
Double flash On
(Nodeguarding or 200 ms| 200 ms| 200 ms 1000 ms
Heartbeat) off
On —
Triple flash 200 ms| 200 ms| 200 ms| 200 ms| 200 ms 1000 ms
(Data transfer) off |
On — _
Slow flashing 1000 ms 1000 ms
(Self-test)
off
On
LEDs lit up
Off —
34

35013944 01 November 2007

CANopen on BMX P34 Processors

Description The following table describes the role of CAN RUN and CAN ERR LEDs:
Display On Rapidflashing | Flash ‘ Flashing Off Slow flashing
LED o ® ® X O ®
CAN RUN | The masteris | Initialization in | Simple: The The masteris |- Starting
(green) operational. process. master is pre- CANopen
stopped. operational. master self-
Triple: Loading test.
of CANopen
firmware in
process.
CAN ERR | Bus stopped. Initialization in | Simple : at Invalid No error. The CANopen
(red) The CAN process. least one of the | configuration. component
controller has error counters cannot start.
status "BUS has attained or
OFF". over or
exceeded the
alert level.
Double :

Monitoring fault
(Nodeguarding
or Heartbeat)

35013944 01 November 2007

35

CANopen on BMX P34 Processors

36

35013944 01 November 2007

Presentation of CANopen devices

3

At a Glance

Subject of this
Section

What's in this
Chapter?

This section presents the different CANopen devices.

This chapter contains the following topics:

Topic Page
CANopen Devices 38
CANopen motion command devices 39
CANopen Input/Output devices 45
Other Devices 49

35013944 01 November 2007

37

CANopen slaves

CANopen Devices

At a Glance

Motion
Command
Devices

Input/Output
Devices

Other Devices

The devices that you can connect to a CANopen bus and that can be configured in

Unity Pro V3.1 are grouped according to their functions:

e motion command devices,
e input/output devices,
e other devices.

Note: Only devices from the hardware catalog can be used with Unity Pro.

Motion command devices enable you to control motors.
These devices are:

Altivar,

Lexium,

ICLA,

Osicoder,

Telsys T,

SD328A Stepper Drive.

Input/Output modules function as remote modules. These devices are:

Tego Power devices,
Advantys FTB,
Advantys OTB,
Advantys FTM,
Preventa devices.

These are:

e Advantys islands STB,
e Tesys U,

e Festo Valve Terminal,
e Parker Moduflex.

The STB islands also allow the monitoring of inputs/outputs.

38

35013944 01 November 2007

CANopen slaves

CANopen motion command devices

At aglance

Motion command devices enable you to control motors.

These devices are:

Altivar,

Lexium,

ICLA,

Osicoder,

Tesys T,

SD328A Stepper Drive.

35013944 01 November 2007

39

CANopen slaves

Altivar devices An Altivar device enable to control the speed a motor by flux vector control.
The following figure gives an example of an Altivar device:

Note: The recommended minimum version of the firmware is V1.1 for ATV31,
ATV61 and ATV71.

Note: ATV31 V1.7 is not supported. However, it can be used by configuring it with
ATV31 1.2 profile. In this case, only the ATV31 V1.2 functions will be available

Note: ATV71 : if you have to disconnect it from the CANopen bus, power off the
device, else, when reconnecting it on the bus, it will provoke a Bus Fatal error. This
problem is fixed with the ATV71 firmware version V1.2 and upper.

Note: ATV61 : if you have to disconnect it from the CANopen bus, power off the
device, else, when reconnecting it on the bus, it will provoke a Bus Fatal error. This
problem is fixed with the ATV61 firmware version V1.4 and upper.

40 35013944 01 November 2007

CANopen slaves

Lexium devices

The range of Lexium 05 servo drives that are compatible with BSH servo motors
constitutes a compact and dynamic combination for machines across a wide power
(0,4...6 kW) and power supply voltage range.

The compact design of the Lexium 05 servo drive and the integrated components
(line filter, braking resistor and safety function) reduces the space required in the
switch cabinet to a minimum. It integrates the Power Removal safety function which
prevents accidental starting of the motor.

Another advantage of the servodrive Lexium 05 is the versatile application options:

e as torque or speed controller via the analogue inputs,
e as electronic gearbox via the RS422 interface,
e as positioning or speed controller via the field bus interface.

The servodrive is available in four voltage types:

e 115 VAC single-phase,
e 230 VAC single-phase and 3-phase,
e 400/480 VAC 3-phase.

The following figure gives an example of a Lexium device:

Note: The recommended minimum version of the firmware for LexiumO05 device is
V1.120

Note: The recommended minimum version of the firmware for Lexium 15 LP is
V1.45

Note: The recommended minimum version of the firmware for Lexium 15 MH is

V6.64

35013944 01 November 2007

41

CANopen slaves

IcCLA devices ICLA devices are intelligent compact drives. They integrate everything required for
motion tasks: positioning controller, power electronics and servo, EC or stepper
motor.

The following figure gives an example of an IcLA device:

WARNING

NON-SUPPORTED ICLA IFA VERSION.

Operating is guaranteed from the minimum firmware version V1.105.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

WARNING

NON-SUPPORTED ICLA IFE VERSION.

Operating is guaranteed from the minimum firmware version V1.104.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

WARNING

NON-SUPPORTED ICLA IFS VERSION.

Operating is guaranteed from the minimum firmware version V1.107.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

42 35013944 01 November 2007

CANopen slaves

Osicoder The Osicoder device is an angular position sensor.

devices Mechanically coupled to a driving spindle of a machine, the shaft of the encoder

rotates a disc that comprises a succession of opaque and transparent sectors. Light
from leds passes through the transparent sectors of the disc as they appear and is
detected by photosensitive diodes. The photosensitive diodes, in turn, generate an
electrical signal which is amplified and converted into a digital signal before being
transmitted to a processing system or an electronic variable speed drive. The
electrical output of the encoder therefore represents, in digital form, the angular
position of the input shaft.

The following figure gives an example of an Osicoder device:

Note: The minimum version of the firmware for Osicoder devices is V1.0.

35013944 01 November 2007 43

CANopen slaves

Tesys T Motor
Management
System

SD328A Stepper
Drive

Tesys T is a motor management system that provides protection, metering and
monitoring functions for single-phase and 3-phase, constant speed, a.c. motors up
to 810 A.

It's use in motor control panels makes it possible to:

e Increase the operationnal availibility of installations,

e improve flexibility from project design through to implementation,

e increase productivity by making available all information needed to run the
system.

The following figure gives an example of a Tesys T device:

The SD328A is a universally applicable stepper drive.

It offers a very compact and powerful drive system in combination with selected
stepper motors by Berger Lahr.

The device has an output for direct connection of an optional holding brake.
The following figure gives an example of a SD328A Stepper Drive device:

44

35013944 01 November 2007

CANopen slaves

CANopen Input/Output devices

At aglance The Input/Output modules function as remote modules.

These devices are:

Tego Power devices,
Advantys FTB,
Advantys OTB,
Advantys FTM,
Preventa devices.

Tego Power Tego Power is a modular system which standardizes and simplifies the implemen-

devices tation of motor starters with its pre-wired control and power circuits. In addition, this
system enables the motor starter to be customized at a later date, reduces
maintenance time and optimizes panel space by reducing the number of terminals
and intermediate interfaces and also the amount of ducting.

The following figure gives an example of a Tego Power device:

Note: The minimum version for TegoPower APP_1CCOQOO0 and TegoPower
APP_1CCO2is V1.0

35013944 01 November 2007

45

CANopen slaves

Advantys FTB
devices

The Advantys FTB dispatcher is composed of several input/outputs that allow
captors and activators to be connected.

Note: The minimum firmware version for FTB is V1.7

Note: For FTB 1CN16CMO, operating is guaranteed from the minimum firmware
version V1.5.

The following figure gives an example of an Advantys FTB device:

46

35013944 01 November 2007

CANopen slaves

Advantys OTB
devices

An Advantys OTB device enables you to constitute discrete input/output islands
(max.132 channels in boundaries) or analog (max. 48 channels) IP20 and to
connect them close to the active captors.

The following figure gives an example of an Advantys OTB device:

r g

5

%
-

7
e il

wl

Note: The minimum firmware version for OTB is V2.0

WARNING

NON-SUPPORTED OTB VERSION.

Operating is guaranteed from the minimum firmware version V2.0.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

35013944 01 November 2007

47

CANopen slaves

Advantys FTM The Advantys FTM modular system enables you to connect a variable number of

CANopen input/output splitter boxes, using a single communication interface (field bus

module).

These splitter boxes are connected to the module using a hybrid cable which
includes the internal bus and power supply (internal, sensor and actuator).

The input/output splitter boxes are independent of the field bus type, thus reducing
the number of splitter box references. Once installed, the system is ready to begin
operation.

The following figure gives an example of an Advantys FTM CANopen device:

Preventa devices Preventa devices are electronic safety controllers for monitoring safety functions.
The following figure gives an example of a Preventa device:

48 35013944 01 November 2007

CANopen slaves

Other Devices

At a Glance These devices are:

STB Island,
Tesys U,
Festo Valve Terminal,

[)
[)
[)
e Parker Moduflex.

35013944 01 November 2007 49

CANopen slaves

STB Island

An Advantys STB island is composed of several input/output modules.

The modular elements of the island are connected by a CANopen local bus using a
network interface module NIM.

STB modules can only be used in an STB island.

The following figure gives an example of an island:

g 8
- a
= o
o I
o w

il I INPUT

Description:

Number Designation

1 Network Interface Module.

2 Power supply Distribution Module.

3 Distributed input/output modules. These modules can be:
e digital input/output modules,
e analog input/output modules,
® special purposes.

4 Termination plate of island bus.

50

35013944 01 November 2007

CANopen slaves

Tesys U Devices

TeSys U-Line motor starters provide motor control for choices ranging from a basic
motor starter with solid-state thermal overload protection to a sophisticated motor
controller which communicates on networks and includes programmable motor
protection.

This device performs the following functions:

e Protection and control of 1-phase or 3-phase motors:
e isolation breaking function,
e electronic short-circuit protection,
e electronic overload protection,
e power switching.

e Control of the application:
e alarming (warning protection function alarms, e.g. overload pending),
e status monitoring (running, ready, fault....),
e application monitoring (running time, number of faults, motor current values),
e fault logging (last 5 faults saved, together with motor parameter values).

The following figure gives an example of a Tesys U device:

35013944 01 November 2007

51

CANopen slaves

Festo valve
terminal

CPV Direct:

CPV valves are series manifold valves, in addition to the valve function they contain
all of the pneumatic ducts for supply, exhaust and the working lines.

The supply ducts are a central component of the valve slices and allow a direct flow
of air through the valve slices. This helps achieve maximum flow rates. All valves
have a pneumatic pilot control for optimising performance.

The fieldbus node is directly integrated in the electrical interface of the valve
terminal and therefore takes up only a minimal amount of space.

The optional string extension allows an additional valve terminal and I/O modules
to be connected to the Fieldbus Direct fieldbus node.

The CPV valve terminal is available in three sizes:

e CPV10
e CPV14
e CPV18

The following figure gives an example of a Festo valve terminal device:

CPX Terminal:

The electrical terminal CPX is a modular peripheral system for valve terminals. The
system is specifically designed so that the valve terminal can be adapted to suit
different applications.

Variable connection options for the valve terminal pneumatic components
(MPA/CPAIVTSA)

Flexible electrical connection technology for sensors and actuators
The CPX terminal can also be used without valves as a remote I/O system.

52

35013944 01 November 2007

CANopen slaves

The following figure gives an example of a CPX terminal device:

35013944 01 November 2007 53

CANopen slaves

Parker Moduflex

Parker Moduflex Valve System provides flexible pneumatic automation.

Depending on application, you can assemble short or long islands (up to 16
outputs). IP 65-67 water and dust protection allows the valve to be installed near the
cylinders for shorter response time and lower air consumption. The Parker Moduflex
Valve System CANopen module (P2M2HBVC11600) can be used as an enhanced
CANopen device in an Modicon M340 configuration.

The firmware version of the P2M2HBVC11600 must be V 1.4 or later.

For detailed descriptions of P2M2HBVC11600 wiring, LED patterns, set-up
procedures, and functionality, refer to user documentation provided by Parker.

"S" Series Stand-Alone Valves:

For isolated cylinders on a machine, it is preferable to locate the valve close by.
Therefore a stand-alone module is ideal, response time and air consumption are
then reduced to a minimum. Peripheral modules can be installed directly into the
valve.

The following figure gives an example of a "S" Series Single Solenoid device:

The following figure gives an example of a "S" Series Single Air Pilot device:

"T" Series Valve Island Modules
For small groups of cylinders requiring short localized valve islands.

Modules with different functions and flow passages may be combined in the same
island manifold, giving total flexibility to adapt to all machine requirements.

54

35013944 01 November 2007

CANopen slaves

The following figure gives an example of a "T" Series Valve Island Module device:

35013944 01 November 2007 55

CANopen slaves

56

35013944 01 November 2007

Software Implementation of

CANopen Communication I I I
At a Glance
Subject of this This part describes the various possibilities for software configuration, programming
Part and diagnostics in a CANopen application.
What's in this This part contains the following chapters:
Part?
Chapter Chapter Name Page
4 Generalities 59
5 Configuration of Communication on the CANopen Bus 65
6 Programming 99
7 Debugging Communication on the CANopen Bus 117
8 Diagnostics 125
9 Language Objects 131

35013944 01 November 2007 57

CANopen Bus

58

35013944 01 November 2007

Generalities

At a Glance

Subject of this
Chapter

What's in this
Chapter?

This chapter describes CANopen software implementation principles on the

Modicon M340 bus.

This chapter contains the following topics:

Topic Page

Implementation Principle 60
Implementation Method 62
Performances 63

35013944 01 November 2007

59

Generalities

Implementation Principle

At a Glance In order to implement a CANopen bus, it is necessary to define the physical context
of the application in which the bus is integrated (rack, supply, processor, modules),
and then ensure that the necessary software is implemented.

The software is implemented in two ways with Unity Pro:

e in offline mode
e in online mode

60 35013944 01 November 2007

Generalities

Implementation

Principle

The following table shows the different implementation phases:

Mode

Phase

Description

Offline

Configuration

Entry of configuration parameters.

Offline or online

Symbolization

Symbolization of the variables associated with the
CANopen port of the BMX P34 eseeprocessor.

Programming

Programming the specific functions:
® Dbit objects or associated words,
® Specific instructions.

Online Transfer Transferring the application to the PLC.
Debugging Different resources are available for debugging the
Diagnostics application, controlling inputs/outputs and diagnosing
faults:
® Language objects or IODDTS,
® The Unity Pro debugging screen,
® Signaling by LED.
Offline or online | Documentation | Printing the various information relating to the

configuration of the CANopen port.

Note: The above order is given for your information. Unity Pro software enables
you to use editors in the desired order of interactive manner.

UNEXPECTED APPLICATION BEHAVIOR

Use diagnosis system information and monitor the response time of the
communication. In case of disturbed communication, the response time can
be too high.
Failure to follow these instructions will result in death or serious injury.

35013944 01 November 2007

61

Generalities

Implementation Method

Overview The following flowchart shows the CANopen port implementation method for
BMX P34 eeee processors:

Slave declaration and
configuration

v

Configuration of the master

Programming the application

4 v
Using READ_VAR /
WRITE_VAR function

Using PDO object

v

Transfer of the application
to the PLC

v

Debugging and diagnostics

v

Documentation

62 35013944 01 November 2007

Generalities

Performances

Introduction

Impact on Task
Cycle Time

Communication
by SDO

Bus Start

Various CANopen performances are detailed below.

The time given to each task cycle is as follows:

Task Minimum

CANopen inputs 10 us/ PDO

CANopen outputs 120 us / PDO

Diagnostics 100 pus

The average duration of READ_VAR and WRI TE_VAR functions is as follows:

Function Minimum
READ_VAR or 2 * Task cycle in ms * Number of SDOs
WRITE_VAR

Example : for a task cycle of 15ms and a number of 10 SODs, the SDO exchange
timeis : 2 * 15 * 10 = 300 ms.

Note: Only one SDO is exchanged at the same time on the bus. Itis necessary to
await the end of the preceding exchange to begin a new exchange. The end of
exchange polling is carried out at each task cycle, so there is one SDO exchange
for each task cycle.

The CANopen bus start time depends on the number of devices.
The minimum time to start a CANopen bus is 7 seconds.

The time to configure one device is about 0.8 second.

The start ime of a CANopen bus with 64 devices is about 1 minute.

35013944 01 November 2007

63

Generalities

Disconnection/ Disconnection:
Recoqnectlon of The time to detect the disconnection of a device depends on the error control:
a Device
Error control Description
Guardtime The time to detect the disconnexion is Guardtime * life
time factor
Heartbeat The time to detect the disconnexion is Heartbeat
producer time + (Heartbeat producer time /2)

Reconnection:

Each second, the master polls on the device to check the reconnection of the device.
The time to reconnect the device is about 1 second if the device is not alone on the
bus.

If the device is alone on the bus, the disconnection of the device set the master in
the same case as the disconnection of the complete bus. After this state, the master
restarts the bus and the reconnection time of the device is about 7 seconds.

64 35013944 01 November 2007

Configuration of Communication
on the CANopen Bus 5

At a Glance

Aim of this
Chapter

What's in this
Chapter?

This chapter presents the configuration of the CANopen field bus and of the bus
master and slaves.

This chapter contains the following sections:

Section Topic Page
51 General Points 66
5.2 Bus Configuration 67
5.3 Device Configuration 75
5.4 Master Configuration 91

35013944 01 November 2007

65

CANopen Configuration

5.1 General Points
Generalities
Introduction Configuration of a CANopen architecture is entirely integrated to Unity Pro.

When the channel of the CANopen master has been configured, a node is
automatically created in the project browser. It is then possible to launch Bus Editor
from this node in order to define the topology of the bus and configure the CANopen
elements.

Note: You cannot modify the configuration of the CANopen bus in connected
mode.

66 35013944 01 November 2007

CANopen Configuration

5.2 Bus Configuration

At a Glance

Subject of this This section presents the configuration of the CANopen bus.

Section

What's in this This section contains the following topics:

ion?

Section~ Topic Page
How to Access the CANopen Bus Configuration Screen 68
CANopen Bus Editor 69
How to Add a Device on the Bus 70
How to Delete/Move/Duplicate a Bus Device 72
View CANopen Bus in the Project Browser 74

35013944 01 November 2007 67

CANopen Configuration

How to Access the CANopen Bus Configuration Screen

This describes how to access the configuration screen of the CANopen bus for a
Modicon M340 PLC with a built-in CANopen link.

Procedure To access the CANopen field bus, perform the following actions:
Step Action
1 From the project navigator, deploy the Configuration directory.
Result: the following screen appears:
; tation
B s
,,,,,,,,, @ Configuration
[+ E[ﬂ 0:PLC bus
[+ Ei‘ﬂ 3 CANopen
[+ D Derived Data Types
D Derived FB Types
[D Variables & FB instances
[+ [3 Communication
[+ S Program
[“_—] Animation Tables
D Operator Screens
[+ [“_—] Documentation
2 To open the CANopen bus screen, select one of the following methods:

® double-click on the CANopen directory,
® select the CANopen sub-directory and select Openin the contextual menu.

Result: the CANopen window appears:

l CANopen

Bus: | 3 |CANopen comm head 01.00 [¥]

68 35013944 01 November 2007

CANopen Configuration

CANopen Bus Editor

At a Glance This screen is used to declare devices which are connected to the bus.
Illustration The CANopen bus editor looks like this:
1 = CANopen -)
Bus: [3 [CANopen comm head 01.[%] Connections configured: 2
S =

(e

ATV1

()@

O .
< I E 2
1 1]
I I
2 3
Elements and This table describes the different areas that make up the configuration screen:
Functions Number | Element Function
1 Bus Bus number.
Connections Indicates the number of connection points configured.
configured
2 Logical address This area includes the addresses of the devices connected
area to the bus.
3 Module area This area includes the devices that are connected to the
bus.

Available connection points are indicated by an empty white square.

35013944 01 November 2007 69

CANopen Configuration

How to Add a Device on the Bus

Procedure This operation is used to add, via the software, a device connected to the CANopen
bus:
Step Action
1 Access the CANopen (see How to Access the CANopen Bus Configuration Screen, p. 68)
configuration screen.
2 Double-click on the place where the module should be connected.
Result: the New Device screen appears.
New Device
Topologic address: [1..63] 1
—
Node identification: 1
Cancel |
Reference Description E] Help |
[=--CANopen drop
Other
[=FMovement
ATV31 V1.1 Altivar 31 CANopen Slave DSP402 (TEATV3111E.eds
ATV31_V1.2 Altivar 31 CANopen Slave DSP402 (TEATV3112E.eds
ATV31T_V1_3 Altivar 31 CANopen Slave DSP402 (TEATV3112E eds
ATV61 V11 ATV61 (TEATV6111E.eds)
ATV71_V1_1 ATV71 (TEATV7111E.eds)
IclA_IFA IcIA-IFA CANopen (IclA-IFA.eds)
IclA_IFE IcIA-IFE CANopen (IclA-IFE.eds)
IclA_IFS IcIA-IFS CANopen (IcIA-IFS eds)
IclA_N065 IclAN065 based on profile DS301V4.01 and DSP402V2. ...
Lexium05 DCX170 CANopen (TEDCX170_0100E.eds)
Lexium05_MFB LXMO5A PLCopen (LEXIUMO5_MFB.EDS) i
Lexium15_HP LEXIUM 15 HP servodrive (Lexium 15 MP HP.eds)
Lexium15_MP LEXIUM 15 MP servodrive (Lexium 15 MP HP.eds) E
Drop end communicator
3 Enter the number of the connection point corresponding to the address.
By default, the Unity Pro software offers the first free consecutive address.
4 In the Communicator field, select the element type enabling communication on the CANopen bus.
For modules with built-in communicators, this window does not appear.
70 35013944 01 November 2007

CANopen Configuration

Step Action
5 Validate with Ok.
Result: the module is declared.
| Fipio
Bus: | 3 ICANopen comm head 01.00 E Connections configured: 1
@)
O O O

35013944 01 November 2007 71

CANopen Configuration

How to Delete/Move/Duplicate a Bus Device

Procedure for This operation is used to delete, via the software, a device connected to the
Deleting a Device CANopen bus:
Step Action
1 Access the CANopen configuration screen.
2 Right-click on the connection point of the device to be deleted, then click on
Delete the drop.

Procedure for Moving a device does not involve a physical move on the bus, but rather a change
Moving a Device inthe device address logic. A movement thus triggers modification of the address of
inputs/outputs objects in the program and movement of the variables associated

with these objects.

Step Action
Access the CANopen configuration screen.
Select the connection point to be moved (a frame surrounds the selected connection point).

Drag and drop the connection point to be moved to an empty connection point.
Result: the Move Device screen appears:

Move Device

—
Topologic address: [5..62] E
Cancel |
Node identification: 5
Help |

Enter the number of the destination connection point.

Confirm the new connection point by pressing OK.
Result: the Move Device screen appears:

Move Device
Do you want to update all references with the variables (program & data)?
@ If yes, then you will not be able to go back with the Undo command.
4

It may take several minutes to update variables if many moved I/0 variables are used

Yes | | No Cancel

6 Confirm the modification by pressing Yes to modify the addresses of the inputs/outputs objects in the
program and move the variables associated with these objects.

72 35013944 01 November 2007

CANopen Configuration

Procedure for This feature is similar to the function for moving a device:
Duplicating a
Device
Step Action
1 Access the CANopen configuration screen.

Right-click on the device to be copied, then click on Copy.

Right-click on the connection point desired, then click on Paste.
Result: the New Device screen appears:

New Device

Cancel

Help |

Topologic address: [5..62] E
Node identification: 5

4 Enter the number of the destination connection point.

Confirm the new connection point by pressing OK.

35013944 01 November 2007 73

CANopen Configuration

View CANopen Bus in the Project Browser

At a Glance The CANopen bus is shown is the configuration directory in the project browser. The
number of the bus is calculated automatically by Unity Pro.

Note: The value of the bus number cannot be modified.

The following illustration shows the CANopen bus and slaves in the project browser:
Project Browser

%E'. Structural View

{3 Station
2l 0: PLC Bus
-l 0: BMX XBP 0800
B (PP BMX CPS 2000
~[§ 0:BMXP342010

Number of CANopen bus
(not modifiable). -~ li 1 BMX AMI 0410
2 : BMX EHC 0200

~{F 3:BMXDDI 1603

4O~ 1: CANopen drop
M 0.0: ATV31_v1_1
(O~ 2: CANopen drop
i) 0.0 : Lexium05

Slave address.

Slave address.

Derived Data Types
Derived FB Types
Variables & FB instances

Communication
Movement

74 35013944 01 November 2007

CANopen Configuration

5.3

Device Configuration

At a Glance

Subject of this
Section

What's in this
Section?

This section presents the configuration of the initial parameters of the CANopen

devices.

There are three ways of configuring the initial parameters:

e Configuration using Unity,
e Configuration using an external tool,
e Manual Configuration.

function, when available.

Note: Before configuring a device, it is strongly recommended to select the

This section contains the following topics:

Topic Page
Slave Functions 76
Configuration Using Unity 79
Configuration Using an External Tool: Configuration Software 85
Manual Configuration 89

35013944 01 November 2007

75

CANopen Configuration

Slave Functions

At a Glance

Available
Functions

So as to facilitate their configuration, certain CANopen devices are represented
through functions.

Each function defines premapped PDOs, as well as certain debugging variables
which can be mapped (PDO tab of the slave configuration screen).

Note: The function should be selected before configuring the slave.

The available functions are as follows:

Function

Description

Devices
involved

Basic

This function allows a simple control of the speed.

Altivar

Standard

This function allows control of the speed and/or torque.

All the parameters that can be mapped are mapped in the

supplemental PDOs for:

® an adjustment of the operating parameters (length of
acceleration,),

® additional surveillance (current value,...),

® additional control (PID, outputs command,...).

Advanced

This function allows control of the speed and/or torque.

Certain parameters can be configured and can also be mapped

in the PDOs to allow:

® an adjustment of the operating parameters (length of
acceleration,),

® additional surveillance (current value,...),

® additional control (PID, outputs command,...).

76

35013944 01 November 2007

CANopen Configuration

Function

Description

Devices
involved

Simple

Use this profile if the island does not contain high resolution
analog 1/0 module or the TeSys U STB modules.

This profile contains:

o NIM diagnostic information (index 4000-index 4006),

e discrete input information (index 6000),

16 bit discrete information (index 6100),

discrete output information (index 6200),

16 bit discrete output information (index 6300),

low resolution analog input information (index 6401),
low resolution analog output information (index 6411).

Extended

Use this profile if the island contains high resolution analog I/O
module or the TeSys U STB modules.

NIM diagnostic information (index 4000-index 4006),
discrete input information (index 6000),

16 bit discrete information (index 6100),

discrete output information (index 6200),

16 bit discrete output information (index 6300),

low resolution analog input information (index 6401),

low resolution analog output information (index 6411),

high resolution analog input information (index 2200-221F),
high resolution analog output information (index 3200-321F),
TeSys U input information (index 2600-261F),

TeSys U output information (index 3600-361F).

STB

NCO1010&

NCO2212

Advanced

Use this profile if the island contains high resolution analog I/O
module or HMI or the TeSys U STB modules.

This profile contains:

® NIM diagnostic information (index 4000-index 4006),

e discrete input information (index 6000),

® 16 bit discrete information (index 6100),

discrete output information (index 6200),

16 bit discrete output information (index 6300),

low resolution analog input information (index 6401),

low resolution analog output information (index 6411),

high resolution analog input information (index 2200-221F),
high resolution analog output information (index 3200-321F),
TeSys U input information (index 2600-261F),

TeSys U output information (index 3600-361F),

3rd party CANopen devices (index 2000-201F),

RTP information (index 4100 & index 4101).

STB
NCO2212

Controlling

This function is especially created for CANopen
communications with the built-in controller card and all the
application cards (pump control,...).

Altivar 61/
71

35013944 01 November 2007

77

CANopen Configuration

Function | Description Devices
involved
Basic The basic level is designed to configure the valve terminal Festo CPV
without CP extension.
CP_Extens | This level is designed to configure 1/0Os including the CP
ion extension.
Basic_DIO | The basic level is designed to configure the CPX with pneumatic | Festo CPX
_only valves and Digital 1/0 only.
Generic_DI | The generic DS401 level is designed to configure CPX valves
O_AIO and 1/Os, including Analogue 1/0 modules.
Advanced | The advanced level is designed to configure the maximum 1/Os
and the complete parameters set.
Default This feature is the default function for certain devices. It may not | All the
be modified. slaves
except ATV
and Lexium

Note: Some devices can only handle one function. In this case, the function
appears grayed out and cannot be modified.

Function

| Default

=]

78

35013944 01 November 2007

CANopen Configuration

Configuration Using Unity

At a Glance Some equipment can be configured directly from Unity:

FTB

Osicoder

OTB

Preventa

STB NCO 1010
Tego Power

Festo Valve Terminal
Parker Moduflex

Procedure To configure a slave, perform the following actions:
Step Action
1 Access the CANopen (see How to Access the CANopen Bus Configuration

Screen, p. 68) bus configuration screen.

Double-click on the slave to be configured.

Configure the usage function using the Config tab.

Configure the PDOs using the PDO tab.

alb~jlw|N

Select the error control using the Error control tab.

35013944 01 November 2007 79

CANopen Configuration

Config tab The following figure shows an example of the configuration screen of a slave:
1

2 IcIAN065 based on profile DS301V4.01 and DSP402V2.0 (BLICLANG5_0100E.eds)

B E IclA_N065 'HI PDO][[j] Errorcontrol}]fﬂ Config mj] Debugging]
© Channel 0

Index Label Value
2004:01 Juser profile velocity 1
2004:02 juser profile velocity 2
2004:03 user profile velocity 3
2004:04 |user profile velocity 4
2004:05 user profile velocity 5
2004:06 user profile velocity 6
2004:07 |user profile velocity 7
2004:08 |user profile velocity 8
2004:09 |user profile velocity 9

9 [2004 0A |user profile velocity 10
1012005:01 [user profile acceleration 1
11{2005:02 |user profile acceleration 2
122005:03 |user profile acceleration 3
132005:04 |user profile acceleration 4
— 14| 2005:05 |user profile acceleration 5
Function: 15 2005:06 |user profile acceleration 6
| Default Iﬂ 16 2005:07 |user profile acceleration 7
2005:08 |user profile acceleration 8
181 2005:09 |user profile acceleration 9
1912005 0A |user profile acceleration 10
201 2006:01 [user profile deceleration 1
212006:02 |user profile deceleration 2

O N(oO|U|A[W[N[F|O

|-l>
]

o|o|o|o| of o o] o o o| o o] o o oo o|o|o|o|o|o

I's

The next table shows the various elements of the configuration screen and their
functions:
Number | Element Function
1 Tabs The tab in the foreground indicates the type of screen displayed.
In this case, it is the configuration screen.
2 Module area | Gives a reminder of the device's shortened name.

80 35013944 01 November 2007

CANopen Configuration

Number | Element Function
3 Channel area | This zone allows you to select the communication channel to be
configured.

By clicking on the device, you display the following tabs:

® Description : gives the characteristics of the device,

® CANopen: allows you to access SDO (in online mode),

® |/O Objects: allows pre-symbolizing of the input/output
objects,

® Fault: accessible in online mode only.

By clicking on the channel, you display the following tabs:

e PDO(input/output objects)
® Error control,
e Configuration.
® Debug which can be accessed only in online mode.
e Diagnostics, accessible only in Online mode.
4 General This field allows you to select the slave function.
parameters
area
5 Configuration | This area is used to set up the channels of the devices.
area Some devices can be configured with an external tool. In this

case, the configuration is stored in the device and you cannot
enter configuration parameters because this field is empty.

Note: Refer to the documentation of each device for information on general,
configuration, adjustment and debugging parameters.

Note: All parameters are not sent when the device takes its configuration. The
CPU send only parameters which are different from the default values.

35013944 01 November 2007 81

CANopen Configuration

PDO Tab PDOs make it possible to manage the communication flow between the CANopen
Master and the slaves. The PDO tab allows to configure a PDO.
This screen is divided into 3 parts:
[F! PDO] i Ermor control] i Config]
Transmit (%)
[e Ty.. [nhibi._.[Even.. |Symbo| Topo. Addr.
255 0 0 16181 Variables
) lexium... | %IW\3N0.0... %MW16 | | Display only umapped variables
m“ Parameter Name ~| Ind...
%IW\3.1\0.0... ' %MW16
RAMPsym 3006:01
%ID\3.10.0.0... %MW8 10 act 2008:01
ANA1 act 3009:01
%IW\3.1\0.0... | %MW16 ANA2_act 3009:05
PLCopenRx1 301B:05
ID\3.110.0.0.... %MW10
54 PDO4m #%D3.11000 PLCopenRx2 301B:06
""""" Ll PLCopenTx1 301B:07
PLCopenTx2 301B:08
Receive (%Q) JOGactivate 301B:09
500 _actionStatus 301C:04
_p_actRAMPusr 301F:02
]\ PDO (... CUR_I_target 3020:04
SPEEDnN_target 3021:04
PTPp_abs 3023:01
| %QWN3.10.0.. PTPp_relpref 3023:03
PTPp_target 3023:05
... | %QD\3.1\0.0... PTPp_relpact 3023:06
GEARdenom 3026:03
%QWA3.110.0... GEARnum 3026:04
~(] Target. lexium... | %QD\3.1\0.0... Controlword 6040:00
,,,,,,,,, [73¢ PDO 4 Statusword 6041:00
position actual valu... | 6063:00
(<] |
e Transmit PDOs: information transmitted by the Slave to the Master,
e Receive PDOs: information received by the Slave from the Master,
e Variables: variables that can be mapped to the PDOs. To assign a variable to a
PDO, drag and drop the variable into the desired PDO. No variable can be
assigned with a static PDO.
Note: To configure the STB NCO 1010, it's necessary to determine all the objects
that are valid for this device and to configure them manually in the PDOs.
For more information about the list of the associated objects, please refer to the
STB user manual.
For more information about the use of the PDOs.
82 35013944 01 November 2007

CANopen Configuration

Error Control Tab The Error control tab for CANopen slave modules allows you to configure fault

monitoring.
IcIAN065 based on profile DS301V4.01 and DSP402V2.0 (BLICLAN65_0100E.eds)
E IclA_NOB5 [f! PDO mji Error control l [F! Config W [HI Debugging}
@ Channel 0 ;
Error control
O Use Node Guarding Protocol | Guard Time: 0 3: ms Life Time Factor: |2_ ‘
@ Use Heartbeat Protocol Node Heartbeat Producerl 0 3: ms ‘
Function:
Default =]

Two choices are possible:

e Heartbeat: The Heartbeat mechanism consists of sending cyclical presence

messages generated by a Heartbeat Producer. A Heartbeat transmitter
(producer) sends messages recurringly. The sending time is configured with the
Node Heartbeat Procucer Tine Val ue. One or several elements
connected to the network receive this message. The Heartbeat consumer
surveys the Heartbeat message reception. If its duration exceeds the

Heart beat Consunmer Tine (1.5* Producer Heartbeat Tine), an
Hear beat event is created and the device is in default.

If a M340 Master PLC is used on the CANopen bus, all the nodes using the
Heartbeat control mode are producers. The master surveys the transmission and
the reception of the messages and it's the only receiver of the Heartbeat
messages sent by the nodes

The Master can send Heartbeat messages to the slaves. The Master Heartbeat
producer time is set at 300 ms and is not modifiable.

35013944 01 November 2007

83

CANopen Configuration

e Node guarding: Node Guarding is the monitoring of network nodes. The NMT
(Network Management) master sends an RTR (Remote Transmission Request)
at regular intervals (this period is called Guard Time) and the concerned node
must answer in a given time lapse (the Node Life Time equals the Guard Time
multiplied by the Life Time Factor).

The Life Time value is set at 2 and is not modifiable.

Note: Some devices only support Heartbeat or Node Guarding. For devices which
support Heartbeat and Node Guarding, the only choice in Unity Pro is the
Heartbeat mechanism.

84 35013944 01 November 2007

CANopen Configuration

Configuration Using an External Tool: Configuration Software

At a Glance To configure a STB NCO 2212, a Lexium 05/15, an IcLA, a Tesys U or an
ATV61/71 device, it is necessary to use an external tool:

Advantys Configuration Software for the STB,

PowerSuite for Lexium 05 V2.2.0 patch V2.2.0B Software for the Lexium 05,
Powersuite V2.0 Software for the ATV31, ATV61, ATV71 and the Tesys U,
UNILINK V1.5 for the Lexium 15 LP,

UNILINK V4.0 for the Lexium 15 MH,

ICLA CCT for the IcLA N065,

EasylclA V1.104 for ICLA_IFA, ICLA_IFE, ICLA_IFS.

Note: For motion and drive devices, it is highly recommended to use the software
in conjonction with the Unity MFB in order to facilitate the configuration and
programming.

35013944 01 November 2007 85

CANopen Configuration

Advantys Advantys Configuration Software (Version 2.5) has to be used to configure a
Configuration STB NCO 2212. The Advantys Configuration Software validates the configuration
Software and creates a DCF file that contains all the objects used in the configuration ordered
in the proper sequence. The DCF file can be import from Unity Pro.
Note: The creation of the DCF file is only possible from the full version of Advantys.
The procedure for adding an island to a CANopen bus is as follows:
Step |Action
1 In Advantys Configuration Software (Version 2.2 or above), create a new Island.
2 Select the STB NCO 2212 Network Interface Module.
3 Select the modules which will be used in the application.
4 Configure the island.
5 When the configuration is over, click on File/Export to export the island in DCF
format.
The following window is displayed:
Export
—Target Information
Directory [D:ADATA
Filename | TestNC02212.dcf [~ Short file name
Prefix |
—Export Format —PLC Information
@ DCF (for TwidoSoft, CoDeSys, etc.) Address Type [
O EDS (for SyCon, etc.) —Topological Adress ——
Connection Point
© GSD(for; SyCan, €etc.) Rack
O SCY (for PL7) St
@ TXT; (for: Concept) —Memory Address ——M
Input [
O XSY (for Unity Pro) Output
Help | | OK | Cancel |
6 Click OK to confirm.
7 Once the file is exported, launch Unity Pro and open the project in which the island
will be used.
Add a STB device to the Bus Editor (see How to Add a Device on the Bus, p. 70).
Right-click on the STB device, then click on Open the module.
10 In the PDO tab, click the button Import DCF.
86 35013944 01 November 2007

CANopen Configuration

Powersuite
Software

UNILINK
Software

Step |Action

11 Confirm by clicking OK. The PDOs are configured automatically.

Note: The madification of the topology of an island requires recommencing this
procedure.

For more information about the STB configuration, please refer to the STB user
manual.

The PowerSuite software development is a tool meant to implement the following
Altivar speed drives. It should be used to configure an ATV31/61/71, a Tesys U or a
Lexium 05 device (Powersuite 2)

Various functions are integrated for being used on implementing phases such as:

e configurations preparations,
e setting to work,
e maintenance.

The configuration is directly stored in the device.

For more information about the configuration of an ATV31/61/71 and Tesys U using
Powersuite Software or about the configuration of a Lexium 05 with Power Suite 2,
please refer to the device user manual.

UNILINK provides simplified parameter setting for Lexium 05 servo drives. It's used
to configure, sets and adjusts Lexium MHDA/MHDS drives according to the
associated SER/BPH brushless motor and the application requirements.

For more information about the configuration of a Lexium 15 using UNILINK, please
refer to the Lexium user manual.

35013944 01 November 2007

87

CANopen Configuration

ICLA CCT
Software

The ICLA CCT software is used to configure an IcLA NO65. It includes a graphical
user interface and can be used for commissioning, diagnostics and testing.

ICLA CCT offers the following functions:

Input and display of device parameters,
Archiving and duplication of device parameters,
Display of status and device information,
Positioning of the motor with the PC,
Initialisation of reference movements,

Access to all documented parameters,
Diagnosis of operational malfunctions.

For more information about the configuration of an IcLA NO65 using ICLA CCT,
please refer to the software user manual.

Note: To configure an IcLA NO65 using ICLA CCT, an USB/CANopen converter is
needed.

88

35013944 01 November 2007

CANopen Configuration

Manual Configuration

At a Glance

Configuration of
the ATV 31

ATV 31 and Icla (except NO65) devices can be configured manually from their front
panel.

The following figure presents the different front panels of the ATV 31 servodrive.

Altivar 31 Altivar 31

K
K

ATV31LxxXXXX ATV3LXXXXXXA
The ATV 31 may be configured as follows:

Step Action

1 Press on the "ENT" key to enter the ATV31 configuration menu.

2 Use the "Arrows" keys to select the "COM" Communication menu then confirm
using the "ENT" key.

3 Use the "Arrows" keys to select the "AdCO" menu then confirm using the "ENT"
key.

Enter a value (Address on the CANopen bus).
Confirm using the "ENT" key then exit the menu using the "ESC" key

4 Use the "Arrows" keys to select the "bdCO" menu then confirm using the "ENT"
key.

Enter a value (Speed on the CANopen bus).

Confirm using the "ENT" key then exit the menu using the "ESC" key

5 Press several times on the "ESC" key to exit the configuration menu.

35013944 01 November 2007

89

CANopen Configuration

Note: The configuration may be modified only when the motor is stopped and when
the variable speed controller is locked (cover closed). Any modification entered will

become effective after an "Off/On" cycle of the speed controller.
For more information about the ATV31 configuration, please refer to the Altivar

speed drive user manual.

Configuration of Icla devices, except the Icla N065, have a switch to configure the address and the

Icla Devices speed.

Note: For more information about Icla configuration, please refer to the Icla user

manual.

90 35013944 01 November 2007

CANopen Configuration

54 Master Configuration

At a Glance

Subject of this This section presents the master configuration.

Section

What's in this This section contains the following topics:

ion?

Section? Topic Page
How to Access the CANopen Master Configuration Screen 92
CANopen Master Configuration Screen 94
Description of Master Configuration Screen 96

35013944 01 November 2007 91

CANopen Configuration

How to Access the CANopen Master Configuration Screen

At a Glance

Procedure

This describes how to access the configuration screen of the master for a Modicon
M340 PLC with a built-in CANopen link.

To access the master, carry out the following actions:

Step

Action

1

From the project navigator, deploy the Conf i gur at i on directory.
Result: the following screen appears:

4] Station
.. :
=0 0:PLCBus

E‘ﬂ 3: CANopen

Derived Data Types

B

Derived FB Types
Variables & FB instances

Communication

Program

Animation Tables

Operator Screens

Documentation

CODDLLLD

[

Double-click on the PLC Bus subdirectory.
Result: the following screen appears:

CANopen Port

Double-click on the processor's CANopen port.

92

35013944 01 November 2007

CANopen Configuration

Step | Action
3 The master configuration screen appears:
Il 0.0 : CANopen: CANopen comm head H W E
CANopen communication module
Ed CcANopen comm head || G Config |
Channel 2
No. of words [324 Reset
Index of 1st %MW |0 3: & e
No. of words |32_§
o -
No.ofbis (M) B2 || o) ottt ounan [2
Index of first %M |0 3:
Nb. of bits (%M) |32 3:
Index of first %M |32 <
Bus
Function: ;rYa’:i;msswn spe(z)egB o 750 vI kBaud
message - [
|CANopen : t) 12
SYNC message period 100 ms
Task:
MAST [~]
35013944 01 November 2007 93

CANopen Configuration

CANopen Master Configuration Screen

At a Glance This screen is used to declare and configure the master of the CANopen network
from a Modicon M340 PLC station.
lllustration The configuration screen of the master is as follows:
1
[l 0.0 : CANopen: CANopen comm head Tl
5 CANopen communication module
[cANopen commhead | [[H] Config" |
Channel 2 Inputs —————— - Outputs
No. of words |32 3: Reset
Index of 1st %MW |O 3: . °
No. of words |32 3:
3 Nb.ofbits (%M) [32 =
) Index of 1st %MW |32 3:
Index of first %M 0 3:
Nb. of bits (%M) [32 2]
Index of first%M ~ [32 =
Bus
B Function: Transmission speed 250 : kBaud
CANopen SYNC message COB- | 128
4 SYNC message period
Task: 9ep 100 ms
MAST [v]
5
94

35013944 01 November 2007

CANopen Configuration

Elements and The table below describes the different areas which make up the master
functions configuration screen:
Read | Number Function
1 Tab The tab in the foreground indicates the type of screen displayed. In
this case, it is the configuration screen.
2 Module This area is made up of the abbreviated heading of the processor
equipped with a CANopen port.
3 Channel This zone allows you to select the communication channel to be
configured.

By clicking on the device, you display the tabs:

® Description : gives the characteristics of the built-in CANopen
port,

® Inputs/outputs objects: allows pre-symbolizing of the input/
output objects,

By clicking on a channel, you display the tabs:

® Config . enables you to declare and configure the CANopen
master,

® Debug : accessible in online mode only,

® Fault: accessible in online mode only.

4 General This field enables you to:
parameters ® choose the communication function (non modifiable).
® associate the CANopen bus to an application task:

e MAST which is the master task,

e FAST which is the rapid task.

The tasks are asynchronous in relation to exchanges on the bus.

5 Configuration | This field enables you to:

o configure the PLC internal memory addresses where inputs from
the CANopen devices will periodically be copied.

o configure the PLC internal memory addresses where outputs
from the CANopen devices will periodically be read.

e configure the parameters of the CANopen bus.

35013944 01 November 2007 95

CANopen Configuration

Description of Master Configuration Screen

At a Glance

Inputs

The configuration screen allows configuration of the bus parameters as well as the
inputs and outputs.

The figure below illustrates the inputs configuration area:
Inputs

No. of words (%MW) [32
Index of first %MW [0 S

Nb. of bits (%M) 32|
Index of first%M [0

To configure the inputs of the bus slaves, it is necessary to indicate the memory
areas to which they will be periodically recopied. To define this zone, you must
indicate:

a number of words (%W from 0 to 32,464,
the address of the first word: from O to 32,463,
the number of bits (%): from 0 to 32,634,

the address of the first bit: from 0 to 32,633.

96

35013944 01 November 2007

CANopen Configuration

Outputs

The figure below illustrates the outputs configuration area:

~ Outputs

Maintain Reset
@ O

No. of words (%MW) |32 3:

Index of 1st %MW |32 =

Nb. of bits (%M) 2

Index of first %M 32

The fallback mode (maintain/reset) allows to define the behaviour of the device when
the CPU is in STOP orin HALT:

e Maintain: maintain of outputs (values are kept),
e Reset: reset of outputs (values are set to 0).

To configure the outputs, it is necessary to indicate, as for the inputs, the word and
bits table that will contain the values of the bus slave outputs:

a number of words (%WW: from 1 to 32,464,
the address of the first word: from 0 to 32,463,
the number of bits (%): from 1 to 32,634,

[)
[)
[)
e the address of the first bit: from 0 to 32,633.

Note: the word tables and bit tables are found in the PLC internal memory. Any
crossover between two areas of each table is prohibited. The bits area for the
inputs cannot overlap the bits area for the outputs. The words area for the inputs
cannot overlap the words area for the outputs.

WARNING

UNEXPECTED EQUIPMENT OPERATION

Take every precaution at the installation to have the outputs' position safe in case
of CANopen bus stopping. When the CANopen bus stops, the behaviour is specific
to the equipements connected. See the user manual of those equipments.

Failure to follow these instructions can result in death, serious injury, or

equipment damage.

35013944 01 November 2007

97

CANopen Configuration

Bus Parameters

Bus parameters

Transmission speed
SYNC message COB-ID
SYNC message period

| 250 : kBaud

128

| 100 ms

To configure the bus, it is necessary to indicate:

The figure below illustrates the bus parameters configuration area:

e the transmission speed (see Bus Length, p. 23): 250 kBauds default,

e the COB-ID of the synchronization message: 128 default,
e the synchronization message period: 100 ms default.

Language The parameters presented below are represented in the %KWlanguage objects:
Objects Read Parameter Language object
Inputs Number of words %MW %KW8
Index of the first word %KW10
Number of bits %M %KW4
Index of the first bit %KW6
Outputs Fallback mode %KWO0
Number of words %MW %KW9
Index of the first word %KW11
Number of bits %M %KW5
Index of the first bit %KW7
Bus parameters Transmission speed %KW1
SYNC message COB-ID %KW2
SYNC message period %KW3

98

35013944 01 November 2007

Programming

At a Glance

Introduction This section describes the programming of a CANopen architecture.

What's in this This chapter contains the following topics:

2

Chapter? Topic Page
Exchanges Using PDOs 100
Exchanges Using SDOs 105
Communication functions exemple 108
Modbus request example 115

35013944 01 November 2007

99

Programming

Exchanges Using PDOs

At a Glance PDOs use topologic addresses (% , % W %€Q %QW and internal variables (YMor
9.
[FI PDO] fi Error control] i Config)
Transmit (%)
PDO [Tr. Ty... [Inhibi... [Even... | Symbol | Topo. Addr. [%M...
B 255 0 0 Variables
lexium¢.. | %IW\3.110.0.0.16 | %Mw16 | || Display only umapped varia
[}-[¥\ PDO2.. | 255 0
lexium... %3, 10.0.0.16 oawie | || arameter Name | Ind...
- RAMPsym 3006:01
lexium... |%ID\3.10.0.0.8 | %MW8 10 act 3008:01
. I 255 0 | 100 ANAT_act 3009:01
- » .
Topologic address lexium... %IWN3.1\0.0.0.16 | % ANA2_act 3009:05
lexiurm..._%ID o%wio |} PLCopenRx1 | 301B:05
PLCopenRx2 301B:06
X | PLCopenTx1 301B:07
Internal variable PLCopenTx2 301B:08
JOGactivate 301B:09
... Inhibi... [Even...| Symbol | Topo. Addr -actionStatus | 301C:04
5 " _p_actRAMPusr | 301F:02
CUR_|_target 3020:04
lexium... %QUA3.10.0.016 %4MW16 | | "SPEEDN fargel | 302104
255 | 0 | 100 | PTPp_abs 30230
lexium... | %QW\3.110.0.0.16| %MW16 PTPp_relpref 3023.03
lexium... |%QD\3.10.0.0.8 | %MW8 PTPp_target 3023:05
L PTPp_relpact 3023:06
. GEARdenom 3026:03
lexium... | %QW\3.1\0.0.0.16 ' %MW16 GEARnum 3026:04
lexium... %QD\3.1\0.0.0.10 | %MW10 Controlword 6040:00
Statusword 6041:.00
position actual valu!.6063:00

[

There is an equivalence between topologic addresses and internal variables. For
example, in the figure above, the topologic address % W 3. 1\ 0. 0. 0. 16 is
equivalent to 9W\L6 for the PDO 1.

A PDO can be enabled or disabled.
According with the EDS file, some PDOs are already mapped.

100

35013944 01 November 2007

Programming

A double clickonthet ransm ssi on t ype column displays the following window:

PDO 4

~ Transmission type

O Synchronous acyclic (0)

O Synchronous cyclic (1-240) |0—§ x Sync period
@ Asynchronous (Manuf. Event) (254)

O Asynchronous (Profile Event) (255)

rProperties

Inhibit time (0-65535) : 0 | x100 us

Event timer (0-65535) : [0 = ms

This window allows to configure:

e the transmission type:

e synchronous acyclic: a transmission type of 0 means that the message shall
be transmitted synchronously with the SYNC message but not periodically
according with the value.

e synchronous cyclic: a value between 1 and 240 means that the PDO is
transmitted synchronously and cyclically, the transmission type value
indicating the number of SYNC messages between two PDO transmissions.

e asynchronous PDO: the transmission type 254 means that the PDO is
transmitted asynchronous. It is fully depending on the implementation in the
device. mainly used for digital I/O.

e synchronous PDO: the transmission type 255 means that the PDO is
transmitted asynchronous when the value change.

Verify that the configured transmission type is supported by the selected device.

e the inhibit time: mask the communication during this time),
e the event timer: (time to manage an event in order to start a PDO).

‘ Note: PDOs can only be configured using Unity Pro.

35013944 01 November 2007 101

Programming

Structure of
Topologic
Address

The topologic address of input/output objects of a CANopen bus slave is structured
in the following way:

% 1,Q X,W,D,F\ be ‘' r m ¢ d
Family Element | Values Meaning
Symbol % - Indicates an IEC object.
Object type | - Input object.
Q - Output object.
Format (size) X 8 bits (Ebool) Ebool type Boolean
(not compulsory).
W 16 bits 16 bit WORD-type word.
D 32 Bit 32 bit DINT-type word.
F 32 Bit 32 bit REAL-type word.
Module/channel b 310999 Bus number.
address and e 1to 63 Connection point number (CANopen
connection point slave number).
Rack number r 0 Virtual rack number, always 0.
Module number m 0 Virtual module number, always 0.
Channel number c Equal to O for all | Channel number.
devices except
the FTBs
(channels
numbered O to 7,
then from 10 to
17).
Rank of data in the |d 0...999 Data number of slave.

channel

This number can vary from 0 to 999
because a slave can only have a
maximum of 1000 input and output
words.

102

35013944 01 November 2007

Programming

Example of Example of topologic addressing of an item connected to point 4 of the CANopen
Topologic bus number 3:
Addressing

Module digital/TOR autonomous with Boolean vision

%I\3.4\0.0.5 Boolean value is entered on channel 5
(rang 0 ommitted).

Module digital standard

%IW\3.4\0.0.0.2.5 Boolean value is entered on unique channel O, rank 2,
bit 5.
Themapping is given when the DCF file is imported.

Digital module on an Advantys STB island

%IW\3.4\0.0.0.3.2 Word 3, bit 2, data by Advantys Configuration Software.

Numbering starts at:

e O for channel,
e O forrank.

Note: Virtual objects (racks, modules) always have a rank number equal to 0.

Object addressing of CANopen digital input/output follows the same rules as object
addressing of digital input/output on rack: words, double words and floaters are in
the same block.

Example: device at connection point 4 of CANopen bus 3, on channel 0, with:

Type of data Topologic address:

2 input words %IW \3.4\0.0.0.0 or %IW \3.4\0.0.0.1
1 double input word %ID \3.4\0.0.0.2

1 floating input %IF \3.4\0.0.0.4

1 output word %QW\3.4\0.0.0.6

35013944 01 November 2007 103

Programming

An object can be mapped in a PDO only once. If the same object is mapped several
times in the same PDO, Unity Pro displays an error message.

If there’s several PDOs with the same mapped object, only one PDO can be
enabled. If several PDOs with the same mapped object are enabled, Unity Pro

displays an error message when the application is rebuilt.

Exemple with a Lexium 05:

Error: the same object is

mapped in two enabled |||

PDO =

No error: only one PDO is
enabled.

[F] PDO] R} Ermor control] 5 Config)
Transmit (%)
PDO Tr. Ty... |Inhibi... | Even... |Symbo| Topo. Addr.
-~ PDO1 (Static) | 255 0 0
tatusword %IW\3.110.0.0.16
- <=\ PDO 2 (Static) 255 0 100
""" tatusword %IW\3.1\0.0.0.16
Cl %ID\3.1\0.0.0.8
[=1-[13%(PDO 3 (Static) 255 0 100
(] Statusword %IV1A3.110.0.0.16
(1 Velocity actual... %ID\3.110.0.0.10
------ [PDOA4... 254 0 0
Receive (%Q)
PDO Tr. Ty... {Inhibi... | Even... | Symbol | Topo. Addr.
[=}-[v]¥"N PDO 1 (Static) 255
. ontrolwort %I\W\3.1\0.0.0.16
=~L X PDO 2 (Static) 255
N Ty Controlword > %IW13.110.0.0.16
........ (] Target position %ID\3.110.0.0.8
=[N3 PDO 3 (Static) 255
<Tontrolword > %IW13.110.0.0.16
(] Target velocity %ID\3.110.0.0.10
"""""" [13X PDO4... 254

104

35013944 01 November 2007

Programming

Exchanges Using SDOs

At a Glance

Communication
Functions

The explicit exchange of messages on a CANopen bus is done by read/write
protocol.SDO.
There are 3 ways of accessing SDOs:

e using communication functions READ_VAR and WRI TE_VAR,
e using the Unity Pro debugging screen,
e using the request ModBus FC43/0xD.

WARNING
UNEXPECTED EQUIPMENT OPERATION

When modifying a variable, check the consequences of the SDO command in the
documentation of the specific target CANopen device.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

It is possible to access SDOs using the communication functions READ_VAR and
VRl TE_VAR

Note: Itis possible to send up to 16 READ_VARMRI TE_VARSs simultaneously. Only
one SDO is exchanged at the same time on the bus. It is necessary to await the
end of the preceding exchange to begin a new exchange. The end of exchange
polling is carried out at each task cycle, so there is one SDO exchange for each
task cycle.

For more information about the use of the communication function, see
Communication functions exemple, p. 108

Note: Changing outputs of a device with a write SDO has no effect on the %QW.

35013944 01 November 2007

105

Programming

Unity Pro

SDO objects allow the access to the variables.

In online mode, the CANopen screen (see Slave Diagnostics, p. 128) allows
access to:

e various device objects in read/write mode (only through a listbox),
e description of the variables,
e repeat of communication.

The CANopen screen is brought up as follows:

IclIA-IFA CANOpen (IcLA_IFA.eds)

E IclA_IFA Description] f CANopen] I/0 objects 1

@ Channel 0

— CANopen slave details

Device name: | IcIA_IFA
Vendor Name: | BERGER LAHR
Description: | IclA-IFA (IcLA_IFA)

—Request to send

Request to send: lecture SDO v ?{]azlléet:)yles | 16# |
Index: 16# v | Parameter name |
Sub-index: 16# v | Parameter size (Byte) |

Send Status |

Response received

<« >

The value is displayed in the following way:
[LSB] [] [MSB]

SDO information (read or written) are displayed in a byte format. For 16-bit or 32-bit
information, the low byte is displayed first (eg: 0102 in hexadecimal will be displayed
as 02 01).

106

35013944 01 November 2007

Programming

Modbus Request

SDO Timeouts

From a Human/Machine interface (example: XBT), it is possible to access the SDOs

using the Modbus FC43 request

Sending request

FC43

=T

cEEEERC

CANopen

BMX P34 2010/2030

Read/Write SDO

Altivar

For more information about the use of the Modbus request FC43/0xD, see Modbus

request example, p. 115

Various timeouts are implemented. They depend on the type of object as well as the

type of access (read/write):

Object Timeout
1010h 15s
1011h 3s
2000h to 6000h 8s

All other objects

- SDO Reading 1s

- SDO Writing 2s

35013944 01 November 2007

107

Programming

Communication functions exemple

At a Glance

FBD
representation

e the FBD representation,
e the Ladder representation,
e the IL representation.

It is possible to access SDOs using the communication functions READ_VAR and
WRITE_VAR

There are 3 possible representations:

ADDM r. m c. node)

SDO —

subi ndex: i ndex
of f set

9%W\200: 2
%98W210: 4

ADDM r. m c. node) —
SDO |

subi ndex: i ndex —
of fset |

%94W210: 4

WRITE_VAR

ADR

oBJ

NUM

NB

EMIS

GEST—— GEST
READ_VAR

ADR RECP

oBJ

NUM

NB

GEST— GEST

The FBD representations of the communication functions are the following:

9W210: 4

%W\200: 16

%W\10: 4

108

35013944 01 November 2007

Programming

Ladder

representation

WRITE_VAR
EN ENO
ADDM r. m c. node) —{ADR
SDO — OBJ
subi ndex: i ndex — NUM
of fset __|{NB
%W200: 2 — EMIS
%W210: 4 —{ GEST GEST
READ_VAR
EN ENO
ADDM(r. m c. node) — ADR RECP
SDO —{ OBJ
subi ndex: i ndex — NUM
of fset —{ NB
9MR10: 4 — GEST GEST

The Ladder representations of the communication functions are the following:

%W\210: 4

%W\200: 16

%W\210: 4

35013944 01 November 2007

109

Programming

IL representation The communication function syntax is as follows:
ADDM
IN:=" 0.0.2.2

)
ST %W2100: 8

LD 50

ST %2182 (* tinmeout 5 secondes *)
LD 2

ST %WR183 (* Length *)

(* Read the "Vendor ID' object, slave @, CANopen Network *)

READ VAR (

ADR : = %wWA2100: 8,
oBJ = 'SDO,

NUM : = 16#00011018,
NB : = 0,

GEST : = %W\2120: 4,
RECP : = %wW\2110: 4

(* Wite the val ue 16#FFFF, sl ave @ ouputs, CANopen Network *)

LD 16#ffff
ST %W2200
WRI TE_VAR (
ADR : = %W2100: 8
oBJ := ‘SDO,
NUM : = 16#00016300,
NB : = 0,
EM S : = %wW2200: 1,
CEST : = %wW\2180: 4
)

110 35013944 01 November 2007

Programming

Parameter
Description of
the WRITE_VAR
Function

Parameter
Description of
the READ_VAR
Function

‘ Note: The of f set parameter must be set to 0.

Note: The subi ndex

(subi ndex is the higher byte).

i ndex parameter is encoded in a simple word

The following table outlines the various parameters of the WRI TE_VAR function:

Parameter

Description

ADDM ' r. m c. node’)

Address of the destination entity of the exchange:

® r:the processor rack number,

® m: processor slot in the rack (0)

® c: channel (only use the channel 2 for CANopen),

® node: identifier of the transmitting device on the CANopen
bus.

' SDO

SDO object type.

subi ndex: i ndex

Double word or immediate value identifying the CANopen SDO
index or subindex:

The most significant word making up the double word contains the
sub-index and the least significant word contains the index.
Example: if you use the double word subindex:index:

® the 16 most significant bits contain the subindex,

® the 16 least significant bits contain the index.

EM S Table of words containing the SDO datum to send (%MW200:2).
The recept buffer of the WRITE_VAR function must be greater
than the SDO. The length of a SDO is indicated in device
documentation.

GEST Table of words with 4 inputs (%MW210:4).

The following table outlines the various parameters for the READ_VAR function:

Parameter

Description

ADDM ' r. m c. node’)

Address of the destination entity of the exchange:

e r:the processor rack number,

® m: processor slot in the rack (0)

® c: channel (only use the channel 2 for CANopen),

o node: identifier of the destination device on the bus.

' SDO

SDO object type.

35013944 01 November 2007

111

Programming

Parameter

Description

subi ndex: i ndex

Double word or immediate value identifying the CANopen SDO
index or subindex:

The most significant word making up the double word contains
the sub-index and the least significant word contains the index.
Example: if you use the double word subindex:index:

o the 16 most significant bits contain the subindex,

® the 16 least significant bits contain the index.

GEST

Table of words with 4 inputs (%MW210:4).

RECP

Table of words with at least one input to receive the SDO datum
received (%6MW200:16).

The recept buffer of the READ_VAR function must be greater
than the SDO. The length of a SDO is indicated in device
documentation.

112

35013944 01 November 2007

Programming

Description of
control block
words

The following table describes the various words of the control block:

Fields

Word

Type

Description

Control byte

0 (least
significant)

BYTE

Bit 0 = activity bit
Bit 1 = cancellation bit

Exchange ID

0 (most
significant)

BYTE

Single number, identifier of the
exchange.

ComState

1 (least
significant)

BYTE

0x00 = Exchange terminated

0x01 = Time Out

0x02 = User cancelled

0x03 = Incorrect address format
0x04 = Incorrect destination address
0x06 = Incorrect Com Fb parameters
0x07 = Generic transmission problem
0x09 = Buffer received too small
0x0B = No system resources

O0xFF = Network exchange error

ExchState

1 (most
significant)

BYTE

If ComState = 0x00 :

0x00: request treated

0x01: Cannot be treated

0x02: Incorrect response

If ComState = OxFF

0x07: Generic exchange error

0x0B: The destination device has no
more resources.

0x0D: The device cannot be reached.
0x2B: SDO exchange error

Timeout

WORD

Timeout value (x 100 ms)

Length

WORD

Length in bytes

35013944 01 November 2007

113

Programming

Example in ST
language

(* read the node 5 SDO, index 1018, subindex 3 *)
if (%400) then
subi ndex_i ndex := 16#00031018

YNLO52

50; (* tineout 5 secondes *)

READ VAR(ADDM' 0.0.2.5'),' SDO , subi ndex_i ndex, 0, %\050: 4, %V

WL100: 2);

%vK00: = 0;

end_if;

(* Wite the node 31 SDO

if (%v401) then
subi ndex_i ndex : = 16#0002203C,

%WL152
YNL153
%MAL200

50; (* timeout 5 secondes *)

2; (* length 2 bytes *)

16#03ES8;

(* val ue of object

*)

i ndex 203C, subindex 2 *)

VRl TE_VAR(ADDM ' 0. 0. 2.31'),' SDO , subi ndex_i ndex, 0,

Y%MAL200: 1, %VWAL150: 4) ;

%Mol = 0;

end_if;

114

35013944 01 November 2007

Programming

Modbus request example

At a Glance

SDO read
example

Write SDO
example

From a Man/Machine interface (example : XBT), it is possible to access the SDOs

using the Modbus FC43 request

Node reading 1F, object 1005, subindex 00, length 8 bytes

FC MEI Prot Nid Index | Sub Offset | Length

2B oD 00 1F 1005 |00 0000 |00 08

Response OK: reception of 4 bytes

FC MEI Prot Nid Index | Sub Offset | Length Object value
2B (0]5} 00 1F 1005 |00 0000 |00 04 80 00 00 00
Failure: SDO cancellation code

FC MEC |Extlength | MEI Excpt code | SDO abort code

AB FF 00 06 0D EC 06 02 00 00

Node reading 1F, object 203C, subindex 02, length 2 bytes 03 E8

FC MEI Prot Nid Index | Sub Offset | Length Data
2B oD 01 1F 20C3 |02 0000 | 0002 03 E8
Response OK: reception of 4 bytes

FC MEI Prot Nid Index | Sub Offset | Length

2B oD 00 1F 20 3C |02 0000 |00 00

Failure: SDO cancellation code

FC MEC | Extlength | MEI Excpt code | SDO abort code

AB FF 00 06 (0]5] EC 06 02 00 00

35013944 01 November 2007

115

Programming

116 35013944 01 November 2007

Debugging Communication on the
CANopen Bus

v

At a Glance

Aim of this
Chapter

What's in this
Chapter?

This chapter presents the debugging of the CANopen bus master and slaves.

This chapter contains the following topics:

Topic Page

How to Access the Debug Screens of Remote Devices 118
Debugging Screen of the CANopen Master 119
Slave Debug Screens 121

35013944 01 November 2007

117

CANopen Debugging

How to Access the Debug Screens of Remote Devices

At a Glance The following operations describe how to access different debug screens of the
CANopen network elements.

Note: The debug screenscan only be accessed in online mode.

Master Debug To access the master debug screen, perform the following actions:
Screen Step Action
1 Connect to the manager PLC.
2 Access the CANopen master configuration screen (see How to Access the
CANopen Master Configuration Screen, p. 92).
3 Select the Debug tab.
Slave Debug To access the slave debug screen, perform the following actions:
Screen Step Action
1 Connect to the manager PLC.
2 Access the CANopen slave configuration screen (see Configuration Using
Unity, p. 79).
3 Select the Debug tab.

118 35013944 01 November 2007

CANopen Debugging

Debugging Screen of the CANopen Master

External error counter:

At a Glance This screen can only be used in online mode.
Illustration The figure below shows a master debug screen:
2 Communicator head CANopen Version ; 0.04 6 r ®
] Run Err 10
3 [|[FcANapen comm head 7] Config] {7 Debugging]] Error]
L_|| '@ Channel2 —Status of slaves —Status of master:
Addr | Name of device | Status | NMT | Emcy
T ATV VI Configured | Operational | Emergency | || Status of CANopen Master:| 0X00AD
Communication status: 0X0010
Event indicator: 0X0080
—Counters
Generic error counter: D
4 Hardware error counter: D
Function: Software error counter: D
CANopen [~] o
Communication -1
Task: error counter:
MAST [~] Protocol error counter: D

Specific to the device:

35013944 01 November 2007

119

CANopen Debugging

Elements and

The table below describes the different areas which make up the master debug

Functions screen:

Read |Number Channel

1 Tab The tab in the foreground indicates the type of screen
displayed. In this case, the debug screen.

2 Module This area is made up of the abbreviated heading of the
module equipped with a CANopen port, as well as 3 LEDs
indicating the status of the module.

3 Channel This area allows you to select the communication channel
to be debugged.

By clicking on the device, you display the tabs:

® Description : gives the characteristics of the built-in
CANopen port,

® Inputs/outputs objects: allows pre-symbolizing of the
input/output objects,

By clicking on the channel, you display the tabs:

® Configuration : enables you to declare and configure
the CANopen master,

® Debug: accessible in online mode only.

® Faults: accessible in online mode only.

This area also has an LED indicating the channel status.

4 General parameters This area is used to view:
® the communication function,
® the task associated with the CANopen bus

5 Display and command | This area is composed of 3 windows which let you know:
o the CANopen slaves status,
® the status of the CANopen master,
® the status of the error counters.

120 35013944 01 November 2007

CANopen Debugging

Slave Debug Screens

At a Glance This screen con only be used in online mode.
Illustration The figure below shows a slave debug screen:
1
2 Altivar 31 CANopen Slave DSP402 (TEATV3112E.eds) c C
] Operational ~ Emergency
B E ATV31_V1.2 [F!PDO l[fj]Errorcontrol l[]j]Configuration l[]j]Debug 1
@ Channel 0 (Test)
Parameter Label Value
0]%IW\3.2\0.0.0.0 _|Test.Drivecom_status_register |0
1 [%W\3.210.0.0.1 [Test.Control_effort 0
2 [%W\3.20.0.0.2 [Test.Output_frequency 0
3 3 [%W\3.20.0.03_[TestMotor_current 0
ju— 4 |%QW\3.210.0.0.0 |Test.Frequency_reference |0
5 [%QW\3.2\0.0.0.1 {Test.Drivecom_command_re [0
6 [%QW\3.210.0.0.2 [Test.Target_velocity 0
Function:
| Basic =
4_

35013944 01 November 2007 121

CANopen Debugging

Description of The following table shows the various parts of the debugging screen and their
the Debug functions:

2?;?32:5” Number | Element Function

Devices 1 Tabs The tab in the foreground indicates the type of screen displayed.

In this case, the debug screen.

2 Module area | Contains the abbreviated title of the module.

Two LEDs are found in the same area:

® agreen LED indicating that the device is operational (ON/
OFF),

® ared LED indicating an emergency (ON/OFF).

3 Channel This area allows you to select the communication channel to be

area debugged.

By clicking on the device, you display the tabs:

® Description: gives the characteristics of the built-in CANopen
port.

® Inputs/outputs objects: allows pre-symbolizing of the input/
output objects.

® CANopen: allows read/write of SDO.

® Defaults: accessible in online mode only.

By clicking on the channel, you display the tabs:

e PDO: enables you to configure the PDOs.

e Configuration: enables you to declare and configure the
CANopen master.

® Debug: accessible in online mode only.

® Error control: accessible in online mode only.

This area also has an LED indicating the channel status.

4 General Recalls the function associated with the channel.
parameters
area
5 Parameters | This area displays the information of an inputs/outputs datum for
in progress | all the channels. It is divided into 3 columns:
area e the Parameter column displays the inputs/outputs objects and
the unmarked objects on which the inputs/outputs datum is
mapped,

® the Label column shows the name of the inputs/outputs datum,
e the Value column shows the value of the inputs/outputs datum.

122 35013944 01 November 2007

CANopen Debugging

Note: For standard devices, the values are displayed in the following formats:

e decimal (default),

e hexadecimal,

e hinary.

To select the format, right-click on a value in the debug screen, then choose the
display mode.

For devices with boolean vision (FTB) the value can be forced.

Note: In the Value column, when a variable appears in red, it shows that it's out of
range. The range of the variable can be seen by clicking on it. The range is
displayed in the status bar.

35013944 01 November 2007 123

CANopen Debugging

124 35013944 01 November 2007

Diagnostics

At a Glance

Aim of this
Chapter

What's in this
Chapter?

This section introduces the diagnostic means of the CANopen bus.

This chapter contains the following topics:

Topic Page
How to perform a diagnostic 126
Master Diagnostics 127
Slave Diagnostics 128

35013944 01 November 2007

125

Diagnostics

How to perform a diagnostic

At a Glance You can start by using the LEDs located on the forward face of the processor to
search for faults on the CANopen bus (see Visual Diagnostics of CANopen
Processors, p. 33). Next, you can use the procedure (described below) which details
bus start up management and the checks to be carried out using the language
objects provided by the PLC.

Procedure The following diagram indicates the different phases of the procedure:

»
V*‘

Identify inactive
slaves
A

4(Check the active slaves ‘
oK ¢

‘ Slave diagnostics OK ‘

CANstate has the valué

YES ¢
Check %IW0.y.2.0 YES Normal
Bits 0,1,2,3,5,6and 7= 0 %l0.y.2.ERR =1 operation
A
L YES
Check %IW0.y.2.1
CANopen Master must be in
RUN state.
L YES
Check %IW0.y.2.3 to %IWO0.y.2.42
Assigned devices (%IW0.y.2.3 to %IW0.y.2.3) must be:
- without configuration error (%IW0.y.2.19 to %IW0.y.2.22)
- without emergency error (%IW0.y.2.27 to %IWO0.y.2.30)
- In operationnal state (%IW0.y.2.35 to %IW0.y.2.38)
How to check To understand the various states of %IW, see Details of T_COM_CO_BMX Type

%IW0.y.2 Implicit Exchange Objects of the IODDT, p. 144

126 35013944 01 November 2007

Diagnostics

Master Diagnostics

At a Glance

Module
Diagnostics

Channel
Diagnostics

The CANopen bus master can be diagnosed:

e at module level,
e at channel level.

The Module diagnostics screen displays current errors classed according to their
category:

e |Internal errors,
e External errors,
e Other errors.

The Channel diagnostics screen displays current errors classed according to their
category:

e External errors,
e Other errors.

The table below presents the possible errors of a CANopen function:

Error type Error Language object

External The CANopen master is not operational. %MWr.m.c.2.0
On or several slaves have errors, or are not %MWr.m.c.2.1
operational.

Other Configuration error. %MWr.m.c.2.3
Overrun of the reception queue low priority. %IWr.m.c.0.0
CAN controller overrun. %IWr.m.c.0.1
CAN controller disconnected from the bus. %IWr.m.c.0.2
CAN controller error. %IWr.m.c.0.3
The CAN controller is no longer in error mode. %IWr.m.c.0.4
Overrun of the transmission queue low priority. %IWr.m.c.0.5
Overrun of the reception queue high priority. %IWr.m.c.0.6
Overrun of the transmission queue high priority. %IWr.m.c.0.7
The task cycle time is greater than the CANopen | %IWr.m.c.0.8
master cycle time.

35013944 01 November 2007

127

Diagnostics

Slave Diagnostics

At a Glance

The slave diagnostic screen displays:

Slave diagnostics are only performed at the device level.

e the received emergency messages counter,
e The last four emergency messages (see Emergency Objects, p. 159) received in

chronological order.

Illustration

1

The figure below shows a slave diagnostic screen:

2 Altivar 31 CANopen Slave DSP402 (TEATV3112E.eds)

[e
Operational Emergency

EJATv31 V12 F Descripton [T, CANopen L] Error [VO Object |
7. Channel 0
Emergency message counter: 1
3] [Error code: [Meaning: [Factory error field:
[8100h [Communication [0000000000N
| | |
| | |
| I |
|]
4

128

35013944 01 November 2007

Diagnostics

Elements and The table below describes the different areas which make up the master debug

Functions screen:

Read

Number

Channel

1

Tab

The tab in the foreground indicates the type of screen displayed.
In this case, the diagnostic screen.

Module

This area is made up of the abbreviated heading of the module
equipped with a CANopen port, as well as 2 LEDs indicating the
status of the module.

Channel

This area allows you to select the communication channel to be

debugged.

By clicking on the device, you display the tabs:

® Description : gives the characteristics of the device,

® CANopen: allows read/write of SDO (online mode only)

® Faults : allows you to see the last 4 error codes generated by
the slave module (tab only accessible in online mode) (see
manufacturer's documentation),

® |/O Objects: allows pre-symbolizing of the input/output
objects.

This area also has an LED indicating the channel status.

Display

This area is composed:

e of error counters,

o of the last 4 error messages (the last received message is in
the upper line).

Note: The error counter cannot be reset to 0.

35013944 01 November 2007

129

Diagnostics

130 35013944 01 November 2007

Language Objects

At a Glance

Aim of this
Chapter

What's in this
Chapter?

This chapter describes the implicit and explicit language objects associated with the
CANopen master embedded in CPU modules.

Note: The system bits #59 and system words ¥SW8 and ¥8W9 are not applicable
on CANopen.

Note: For information about specific CANopen Master objects, see Language
Object of the CANopen Specific IODDT, p. 143

This chapter contains the following sections:

Section Topic Page
9.1 Language objects and IODDT for CANopen communication 132
9.2 Language Objects and Generic IODDT Applicable to All 139

Communication Protocols
9.3 Language Object of the CANopen Specific IODDT 143
9.4 Emergency objects 159
9.5 The IODDT Type T_GEN_MOD Applicable to All Modules 163

35013944 01 November 2007

131

Language Objects

9.1 Language objects and IODDT for CANopen
communication

At a Glance

Subject of this This chapter describes the language objects and IODDT of CANopen
Section communication.

What's in this This section contains the following topics:
ion?
Section? Topic Page
Introduction to the Language Objects for CANopen Communication 133

Implicit Exchange Language Objects Associated with the Application-Specific 134
Function

Explicit Exchange Language Objects Associated with the Application-Specific 135
Function

Management of Exchanges and Reports with Explicit Objects 137

132 35013944 01 November 2007

Language Objects

Introduction to the Language Objects for CANopen Communication

General

Language Object
Types

The IODDTs are predefined by the manufacturer and contain inputs/outputs
language objects belonging to a channel of a specific application module.

CANopen communication has 1 associated IODDT:
e T _COM STS_GENused by all communication protocols,

Note: the creation of an IODDT-type variable is performed in two ways:
e |/O object tab,
e Data editor.

Each IODDT contains a group of language objects which are used to control them
and check their operation.

There are two types of language objects:

e implicit exchange objects automatically exchanged at each cycle of the task
associated with the module,

e explicit exchange objects exchanged at the request of the application, using
explicit exchange instructions.

Implicit exchanges concern the status of the modules, the communication signals,
the slaves, etc.

Explicit exchanges allow module parametering and diagnostics.

Note: Each slave device has an IODDT (except FTB). For more information,
please refer to the user manual of the concerned device.

35013944 01 November 2007

133

Language Objects

Implicit Exchange Language Objects Associated with the Application-Specific
Function

At a Glance An integrated application-specific interface or the addition of a module automatically
enhances the language objects application used to program this interface or
module.

These objects correspond to the input/output images and software data of the
module or integrated application-specific interface.

Reminders The module inputs (9% and % W are updated in the PLC memory at the start of the
task, the PLC being in RUN or STOP mode.

The outputs (%€Qand QW are updated at the end of the task, only when the PLC is
in RUN mode.

Note: For BMX P34 processors, when the task occurs in STOP mode, depending
on the configuration selected:
e Outputs are set to fallback position (fallback mode),

e Outputs are maintained at their last value (maintain mode).

Figure The following diagram shows the operating cycle of a PLC task (cyclical execution).

Y

‘ Internal processing ‘

A

‘ Acquisition of inputs ‘

RUN — STOP —
y

‘ Execution of the program ‘

i Y

‘ Update of outputs ‘

134 35013944 01 November 2007

Language Objects

Explicit Exchange Language Objects Associated with the Application-Specific

Function

At a Glance Explicit exchanges are exchanges performed at the user program's request, and
using the READ_STS instructions (read of status words).

These exchanges apply to a set of ¥%MMNobjects of the same type (status) belonging

to a channel.

channel).

Note: These objects provide information about the module (e.g.: type of fault on a

General Principle The diagram below shows the different types of explicit exchanges that can be made

for Using Explicit between the processor and module.

Instructions PLC processor

%MWr.m.c.

Status parameters

READ_STS

Communication module

Communication channel

Status parameters

Command parameters

Adjustment parameters
parameters

Initial adjustment
parameters

Command parameters

Current adjustment
parameters

35013944 01 November 2007

135

Language Objects

Managing
Exchanges

During an explicit exchange, it is hecessary to check its performance in order that
data is only taken into account when the exchange has been correctly executed.

To do this, two types of information is available:

e information concerning the exchange in progress,
e The exchange report.

The following diagram describes the management principle for an exchange

Explicit Exchange
Execution

»|EXchange in progress

Exchange

» Report

Note: In order to avoid several simultaneous explicit exchanges for the same
channel, it is necessary to test the value of the word EXCH_STS (%WN¥ . m c. 0) of
the IODDT associated to the channel before to call any EF using this channel.

136

35013944 01 November 2007

Language Objects

Management of Exchanges and Reports with Explicit Objects

At a Glance When data is exchanged between the PLC memory and the module, the module

may require several task cycles to acknowledge this information. All IODDTs use
two words to manage exchanges:

e EXCH_STS (W . m c. 0): exchange in progress,
e EXCH RPT (%W . m c. 1): report.

Illustration The illustration below shows the different significant bits for managing exchanges:

Reconfiguration (bit 15)
Adjustment (bit 2)

Command (bit 1)
v Status (bit 0)

EXCH_RPT (%MWr.m.c.1)

EXCH_STS (%MWr.m.c.0)

Status parameters READ_STS

Description of The rank 0 bits of the words EXCH_STS (%MW . m c. 0) and EXCH_RPT
Significant Bits (%W . m c. 1) are associated with the status parameters:

e The STS_| N_PROGR bit (%W . m c. 0. 0) indicates whether a read request for
the status words is in progress.

e The STS_ERRbit (%WV¥ . m c. 1. 0) specifies whether a read request for the
status words is accepted by the module channel.

35013944 01 November 2007 137

Language Objects

Execution The table below shows the EXCH_STS (%W . m c. 0) explicit exchange control bits:
:En)?pl(l:iiti?rs foran Standard symbol Type |Access |Meaning Address
Exchange: STS_IN_PROGR BOOL |R Reading of channel status %MWr.m.c.0.0
EXCH_STS words in progress

Note: If the module is not present or is disconnected, explicit exchange objects
(READ_STS, for example) are not sent to the module (STS_| N_PROG
(%W .mc.0.0) = 0), but the words are refreshed.

Explicit The table below presents the EXCH_RPT (%N . m c. 1) report bits:
E)é;f;??ge Standard symbol Type |Access |Meaning Address
EXCH 'RPT STS_ERR BOOL |R Error reading channel status | %MWr.m.c.1.0
- words
(1 =failure)

138 35013944 01 November 2007

Language Objects

9.2 Language Objects and Generic IODDT Applicable
to All Communication Protocols

At a Glance

Aim of this This section presents the language objects and generic IODDT applicable to all

Section communication protocols.

What's in this This section contains the following topics:

ion?

Section? Topic Page
Details of IODDT Implicit Exchange Objects of Type T_COM_STS_GEN 140
Details of IODDT Explicit Exchange Objects of Type T_COM_STS_GEN 141

35013944 01 November 2007 139

Language Objects

Details of IODDT Implicit Exchange Objects of Type T_COM_STS_GEN

At a Glance The following table presents the IODDT implicit exchange objects of type
T_COM_STS_GEN applicable to all communication protocols except Fipio.

Error Bit The table below presents the meaning of the error bit CH ERROR (% r . m c. ERR).
Standard symbol | Type Access | Meaning Address
CH_ERROR EBOOL |R Communication channel error bit. | %lr.m.c.ERR

140 35013944 01 November 2007

Language Objects

Details of IODDT Explicit Exchange Objects of Type T_COM_STS_GEN

At a Glance This section presents the T_COM STS_GENtype IODDT explicit exchange objects
applicable to all communication protocols except Fipio. It includes the word type
objects whose bits have a specific meaning. These objects are presented in detail
below.

Sample Variable Declaration: | ODDT_VARL of type T_COM_STS_GEN.

Observations e In general, the meaning of the bits is given for bit status 1. In specific cases an
explanation is given for each status of the bit.
e Not all bits are used.

Execution Flags The table below shows the meaning of channel exchange control bits from channel
of an Explicit EXCH_STS (%W . m c. 0).

Exchange:

EXCH_STS

Standard symbol Type Access | Meaning Address
STS_IN_PROGR BOOL R Reading of channel status words in progress. %MWr.m.c.0.0
CMD_IN_PROGR BOOL R Current parameter exchange in progress. %MWr.m.c.0.1
ADJ_IN_PROGR BOOL R Adjustment parameter exchange in progress. %MWr.m.c.0.2
Explicit The table below presents the meaning of the exchange report bits EXCH_RPT
Exchange (%W . mc. 1).

Report:

EXCH_RPT

Standard symbol Type Access | Meaning Address
STS_ERR BOOL R Reading error for channel status words. %MWr.m.c.1.0
CMD_ERR BOOL R Error during command parameter exchange. %MWr.m.c.1.1
ADJ_ERR BOOL R Error during adjustment parameter exchange. %MWr.m.c.1.2
Standard The table below shows the meaning of the bits of the status word CH FLT

Channel Faults, (%W . m c. 2). Reading is performed by a READ_STS (I ODDT_VARL1).
CH_FLT

Standard symbol Type Access | Meaning Address
NO_DEVICE BOOL R No device is working on the channel. %MWr.m.c.2.0
1 DEVICE_FLT BOOL R A device on the channel is faulty. %MWr.m.c.2.1

35013944 01 November 2007 141

Language Objects

Standard symbol Type Access | Meaning Address

BLK BOOL R Terminal block fault (not connected). %MWr.m.c.2.2
TO_ERR BOOL R Time out error (defective wiring). %MWr.m.c.2.3
INTERNAL_FLT BOOL R Internal error or channel self-testing. %MWr.m.c.2.4
CONF_FLT BOOL R Different hardware and software configurations. %MWr.m.c.2.5
COM_FLT BOOL R Problem communicating with the PLC. %MWr.m.c.2.6
APPLI_FLT BOOL R Application error (adjustment or configuration %MWr.m.c.2.7

error).
142 35013944 01 November 2007

Language Objects

9.3

Language Object of the CANopen Specific IODDT

At a Glance

Subject of this
Section

What's in this
Section?

This section describes the implicit and explicit language objects of the CANopen

specific IODDT, T_COM_CO_BMX.

This section contains the following topics:

Topic Page

Details of T_COM_CO_BMX Type Implicit Exchange Objects of the IODDT 144
Details of T_COM_CO_BMX Type Explicit Exchange Objects of the IODDT 156
Language Objects Associated with Configuration 158

35013944 01 November 2007

143

Language Objects

Details of T_COM_CO_BMX Type Implicit Exchange Objects of the IODDT

At a Glance

Channel Error

Implicit exchange objects are automatically exchanged at each cycle of a task
associated with the channel. There objects are % , % W %Q and YQW

The table below presents the various implicit exchange objects of IODDT

T_COM _CO_BMKX.

The parameters r,m and ¢ shown in the following-tables represent the topologic
addressing of the module. Each parameter had the following signification:

e r represents the rack number,
e m represents the module number,
e c represents the channel number.

The table below presents the bit% r. m c. ERR:

Standard Type Access Description Address
symbol
CH_ERROR BOOL R Channel error %lIr.m.c.ERR

144

35013944 01 November 2007

Language Objects

Master Status
and Event
Indicator

The table below shows the words W . mc.0to W . mc. 2:

Standard symbol | Type Access Description Address

COMM_STS INT R Communication status of master | %IWr.m.c.0
CAN_STS INT R Status of CANopen Master %IWr.m.c.1
EVT_STS INT R Event indicator %IWr.m.c.2

The following figure gives an example of Master status indicator.

CANopen

CANopen Master

CANopen Slaves

In this example, the word %8 W. 0. 2. 1 gives the status of the CANopen Master.

The parameters are as follows:
e 1:'0,

e m: ‘0,

e c: ‘2’ (CANopen channel).

The last parameter (‘1’) indicates the used word (CAN_STS).

35013944 01 November 2007

145

Language Objects

The table below shows the meaning of bits from various status words from the
master and event indicators:

146 35013944 01 November 2007

Language Objects

Addresses | Description

Bit meaning

%IWr.m.c.0 | Communication
status of master

Bit 0=1: Overflow of the reception queue low priority. The CANopen master is
receiving "Heartbeat" and "Node guarding" messages as well as SSDOs and
CSDOs via the low priority queue.

Bit 1=1: FIFO overwrite of CAN controller

Bit 2=1: The CAN controller has status "BUS Off".

Bit 3=1: CAN controller fault. Bit reset to 0 when the fault disappears.

Bit 4=1: The CAN controller has left fault state.

Bit 5=1: Overflow of the emission queue low priority. The CANopen master is
transmitting "Heartbeat" and "Node guarding" messages as well as SSDOs and
CSDOs via the low priority transmission queue.

Bit 6=1: Overflow of the reception queue high priority. The CANopen master is
receiving RPDOs, NMT commands, the message Sync and emergency messages
via the high priority reception queue.

Bit 7=1: Overflow of the reception queue high priority. The CANopen master is
sending TPDOs, NMT commands, the message Sync and emergency messages via
the high priority queue.

Bit 8=1: Indicates the task cycle is faster than the CANopen master cycle (outputs
can be overwritten). To avoid overwrite, you are advised to have a longer task cycle
time that the CANopen cycle. The cycle values are available in the words
%IWr.m.c.59 a %IWr.m.c.61.

35013944 01 November 2007

147

Language Objects

Addresses | Description Bit meaning
%IWr.m.c.1 | Status of 0x00: INIT: The CANopen master is not initialized. This corresponds to the
CANopen "INITIALISATION" status of the CANopen module. In this state, the CANopen master
Master cannot communicate with the network.
0x40: RESET : The CANopen master is configures as master during "NMT startup”.
The object dictionary of CANopen master can be configured by SDOs via the CAN
bus and the interface of the SDO command. The application has access rights to
read/write to the object dictionary via the SDO command. The initialization of network
manager has not yet started.
=0x60: NET —INIT: Starting according to CIA DSP-302. The CANopen master is
checking the allocation of slaves.
=0x61: NET RESET : The network is reinitialized by the NMT command "Reset
communication all nodes"
=0x62: NET —-WAIT: The CANopen master is waiting for the modules to be able to
run the command "Reset communication”.
0x64: BOOT —CONF: The CANopen master is running the individual initialization of
modules according to CIA DSP-302.
0x8x: CLEAR :The network is scanned. The master is waiting for a start command
("Start CANopen Master/Manager" or "Start network").
0xAXx: RUN The network is in "Operational” state.
0xCx: STOP The network is in "Stop" state.
OxEx: PREOPERATIONAL : The network is in "Pre-operational” status.
0x9x: FATAL ERROR : A fatal error has occurred. The CANopen master must be
reinitialized.
The network is scanned. The 4 heavy bits of the status variable indicate the state of
the network (CLEAR, RUN, STOP, PREOPERATIONAL). The 4 light bits contain
additional information:
Bit O: Error bit for optional modules.
® =0: No error.
e =1: At least one of the optional modules doesn’t correspond to the configuration
of the expected network.
Bit 1: Error bit for obligatory modules.
® =0: No error.
e =1: Atleast one of the obligatory modules is not in the expected status.
Bit 2: Bit "Operational”
® =0: No module including the CANopen Master is in CANopen "Operationnel”
status
e =1: Atleast one of the modules is in "Operationnel" status (excluding the
CANopen Master)
Bit 3: "Operational” bit of CANopen Master
e =0:The CANopen master is not in "Operational" state
e =1:The CANopen Master is in "Operational" status.
148 35013944 01 November 2007

Language Objects

Addresses

Description

Bit meaning

%IWr.m.c.2

Event indicator

Bit 0=1 This bit was still at 1 when a communication error occurred with the network.
The communication status of CANopen Master gives the exact reason. (The
CANopen master is a fatal error).

Bit 1=1 A module is using the node number of CANopen Master. (The CANopen
master is a fatal error.)

Bit2=1 : An obligatory module is faulty with network monitoring (Heartbeat or
Nodeguarding). The consequences of this fault depend on the configuration of the
"NMT Startup" object. This bit is significant if the "NMT Startup" object does not
generate a bus reset.

Bit 3=1 Identity error or error from the object dictionary DCF of an obligatory object.
(The CANopen Master is in fatal error status.)

Bit4=1 : Identity error of an optional module. The concerned module is in "Stop"
state.

Bit 5=1: Failure during the creation of the process image and the configuration of
PDOs during the self-configuration phase. (The CANopen Master is in fatal error
status.)

Bit6=1 : Network monitor fault during the auto-configuration phase. Detection of a
late device connection.

Bit7=1: This bit is still at 1 if a bit in the list of bits changes status.

Bit 8=1: At the beginning of the starting procedure, the CANopen master checks
every slave. This bit is set at 1 if the Master doesn’t support certain functions of the
device (example: bits 4 to 6 of the object 1F81h).

Bit9=1 : The CANopen Master has received an RPDO with too little data. (The
CANopen master has a fatal error.)

Bit10=1: Signals a fault during the configuration of a device. For example: object is
not supported by the device. (The CANopen master has a fatal error.)

Bit11=1 : This bit indicates an overflow of the queue for application specific for the
SDO interface.

Bit12=1: The master cycle time is greater than 256 ms.

Bit13=1: Reserved

Bit14=1: Reserved.

Bit15=1: The Master is alone on the bus (Check that the cable is connected).

35013944 01 November 2007

149

Language Objects

Assigned Slaves The table below shows the words 4 W . mc. 3to %4 W. mc. 6:

Standard symbol Type Access | Description Address
SLAVE_ASSIGNED_1 16 INT R For assigned slaves from 1 to 16 %IWr.m.c.3
SLAVE_ASSIGNED_17_32 INT R For assigned slaves from 17 to 32 | %IWr.m.c.4
SLAVE_ASSIGNED_33_48 INT R For assigned slaves from 33 t0 48 | %IWr.m.c.5
SLAVE_ASSIGNED_49 64 INT R For assigned slaves from 49 to 63 | %IWR.m.c.6

If the bit is equal to 0, no slave is assigned to this bit.
If the bit is equal to 1, a slave is assigned to this bit.
The node number corresponds to the number of the bit + 1.

Slaves The table below shows the words 4 W . mc. 11to 4 W . m c. 14:
Configured

Standard symbol Type Access | Description Address
SLAVE_CONF_1_16 INT R For configured slaves from 1 to 16 | %IWr.m.c.11
SLAVE_CONF_17_32 INT R For configured slaves from 17 to 32 | %IWr.m.c.12
SLAVE_CONF_33 48 INT R For configured slaves from 33 to 48 | %IWr.m.c.13
SLAVE_CONF_49 64 INT R For configured slaves from 49 to 63 | %IWr.m.c.14

If the bit is equal to 0, the slave is not configured and cannot start.
If the bit is equal to 1, the slave is configured and can be started.
The node number corresponds to the number of the bit + 1.

Slaves with The table below shows the words 4 W . m c. 19to 4 W . m c. 22:
Configuration

Faults

Standard symbol Type Access | Description Address
SLAVE_FLT_1_16 INT R Slaves with configuration faults from 1 to 16 %IWr.m.c.19
SLAVE_FLT_17_32 INT R Slaves with configuration faults from 17 to 32 %IWr.m.c.20
SLAVE_FLT_33 48 INT R Slaves with configuration faults from 33 to 48 %IWr.m.c.21
SLAVE_FLT_49 64 INT R Slaves with configuration faults from 49 to 63 %IWr.m.c.22

If the bit is equal to 0, the assigned slave corresponds to the configuration.
If the bit is equal to 1, the assigned slave does not correspond to the configuration.
The node number corresponds to the number of the bit + 1.

150 35013944 01 November 2007

Language Objects

Faulty Slaves The table below shows the words %4 W . m c. 27 to 4 W . m c. 30:
Standard symbol Type Access | Description Address
SLAVE_EMCY_1_16 INT R Faulty slaves from 1 to 16 %IWr.m.c.27
SLAVE_EMCY_17_32 INT R Faulty slaves from 17 to 32 %IWr.m.c.28
SLAVE_EMCY_33_48 INT R Faulty slaves from 33 to 48 %IWr.m.c.29
SLAVE_EMCY_49_64 INT R Faulty slaves from 49 to 63 %IWr.m.c.30

If the bit is equal to 0, the slave is error free.

If the bit is equal to 1, the slave has an error.

The node number corresponds to the number of the bit + 1.
Operational The table below presents the word %4 W . m c. 35:
Slaves from 1 to
16
Standard symbol Type Access | Description Address
SLAVE_ACTIV_1 BOOL R Slave operational on the bus: device 1 %IWr.m.c.35.0
SLAVE_ACTIV_2 BOOL R Slave operational on the bus: device 2 %IWr.m.c.35.1
SLAVE_ACTIV_3 BOOL R Slave operational on the bus: device 3 %IWr.m.c.35.2
SLAVE_ACTIV_4 BOOL R Slave operational on the bus: device 4 %IWr.m.c.35.3
SLAVE_ACTIV_5 BOOL R Slave operational on the bus: device 5 %IWr.m.c.35.4
SLAVE_ACTIV_6 BOOL R Slave operational on the bus: device 6 %IWr.m.c.35.5
SLAVE_ACTIV_7 BOOL R Slave operational on the bus: device 7 %IWr.m.c.35.6
SLAVE_ACTIV_8 BOOL R Slave operational on the bus: device 8 %IWr.m.c.35.7
SLAVE_ACTIV_9 BOOL R Slave operational on the bus: device 9 %IWr.m.c.35.8
SLAVE_ACTIV_10 BOOL R Slave operational on the bus: device 10 %IWr.m.c.35.9
SLAVE_ACTIV_11 BOOL R Slave operational on the bus: device 11 %IWr.m.c.35.10
SLAVE_ACTIV_12 BOOL R Slave operational on the bus: device 12 %IWr.m.c.35.11
SLAVE_ACTIV_13 BOOL R Slave operational on the bus: device 13 %IWr.m.c.35.12
SLAVE_ACTIV_14 BOOL R Slave operational on the bus: device 14 %IWr.m.c.35.13
SLAVE_ACTIV_15 BOOL R Slave operational on the bus: device 15 %IWr.m.c.35.14
SLAVE_ACTIV_16 BOOL R Slave operational on the bus: device 16 %IWr.m.c.35.15

The node number corresponds to the number of the bit + 1.

35013944 01 November 2007

151

Language Objects

Operational
Slaves from 17 to
32

The table below presents the word %4 W . m c. 36:

Standard symbol Type Access | Description Address
SLAVE_ACTIV_17 BOOL Slave operational on the bus: device 17 %IWr.m.c.36.0
SLAVE_ACTIV_18 BOOL R Slave operational on the bus: device 18 %IWr.m.c.36.1
SLAVE_ACTIV_19 BOOL R Slave operational on the bus: device 19 %IWr.m.c.36.2
SLAVE_ACTIV_20 BOOL R Slave operational on the bus: device 20 %IWr.m.c.36.3
SLAVE_ACTIV_21 BOOL R Slave operational on the bus: device 21 %IWr.m.c.36.4
SLAVE_ACTIV_22 BOOL R Slave operational on the bus: device 22 %IWr.m.c.36.5
SLAVE_ACTIV_23 BOOL R Slave operational on the bus: device 23 %IWr.m.c.36.6
SLAVE_ACTIV_24 BOOL R Slave operational on the bus: device 24 %IWr.m.c.36.7
SLAVE_ACTIV_25 BOOL R Slave operational on the bus: device 25 %IWr.m.c.36.8
SLAVE_ACTIV_26 BOOL R Slave operational on the bus: device 26 %IWr.m.c.36.9
SLAVE_ACTIV_27 BOOL R Slave operational on the bus: device 27 %IWr.m.c.36.10
SLAVE_ACTIV_28 BOOL R Slave operational on the bus: device 28 %IWr.m.c.36.11
SLAVE_ACTIV_29 BOOL R Slave operational on the bus: device 29 %IWr.m.c.36.12
SLAVE_ACTIV_30 BOOL R Slave operational on the bus: device 30 %IWr.m.c.36.13
SLAVE_ACTIV_31 BOOL R Slave operational on the bus: device 31 %IWr.m.c.36.14
SLAVE_ACTIV_32 BOOL R Slave operational on the bus: device 32 %IWr.m.c.36.15

152

35013944 01 November 2007

Language Objects

Operational
Slaves from 33to
48

The table below shows the word %4 W . m c¢. 37:

Standard symbol Type Access | Description Address
SLAVE_ACTIV_33 BOOL R Slave operational on the bus: device 33 %IWr.m.c.37.0
SLAVE_ACTIV_34 BOOL R Slave operational on the bus: device 34 %IWr.m.c.37.1
SLAVE_ACTIV_35 BOOL R Slave operational on the bus: device 35 %IWr.m.c.37.2
SLAVE_ACTIV_36 BOOL R Slave operational on the bus: device 36 %IWr.m.c.37.3
SLAVE_ACTIV_37 BOOL R Slave operational on the bus: device 37 %IWr.m.c.37.4
SLAVE_ACTIV_38 BOOL R Slave operational on the bus: device 38 %IWr.m.c.37.5
SLAVE_ACTIV_39 BOOL R Slave operational on the bus: device 39 %IWr.m.c.37.6
SLAVE_ACTIV_40 BOOL R Slave operational on the bus: device 40 %IWr.m.c.37.7
SLAVE_ACTIV_41 BOOL R Slave operational on the bus: device 41 %IWr.m.c.37.8
SLAVE_ACTIV_42 BOOL R Slave operational on the bus: device 42 %IWr.m.c.37.9
SLAVE_ACTIV_43 BOOL R Slave operational on the bus: device 43 %IWr.m.c.37.10
SLAVE_ACTIV_44 BOOL R Slave operational on the bus: device 44 %IWr.m.c.37.11
SLAVE_ACTIV_45 BOOL R Slave operational on the bus: device 45 %IWr.m.c.37.12
SLAVE_ACTIV_46 BOOL R Slave operational on the bus: device 46 %IWr.m.c.37.13
SLAVE_ACTIV_47 BOOL R Slave operational on the bus: device 47 %IWr.m.c.37.14
SLAVE_ACTIV_48 BOOL R Slave operational on the bus: device 48 %IWr.m.c.37.15

35013944 01 November 2007

153

Language Objects

Operational
Slaves from 49to
64

The table below shows the word %4 W . m c. 38:

Standard symbol Type Access | Description Address
SLAVE_ACTIV_49 BOOL R Slave operational on the bus: device 49 %IWr.m.c.38.0
SLAVE_ACTIV_50 BOOL R Slave operational on the bus: device 50 %IWr.m.c.38.1
SLAVE_ACTIV_51 BOOL R Slave operational on the bus: device 51 %IWr.m.c.38.2
SLAVE_ACTIV_52 BOOL R Slave operational on the bus: device 52 %IWr.m.c.38.3
SLAVE_ACTIV_53 BOOL R Slave operational on the bus: device 53 %IWr.m.c.38.4
SLAVE_ACTIV_54 BOOL R Slave operational on the bus: device 54 %IWr.m.c.38.5
SLAVE_ACTIV_55 BOOL R Slave operational on the bus: device 55 %IWr.m.c.38.6
SLAVE_ACTIV_56 BOOL R Slave operational on the bus: device 56 %IWr.m.c.38.7
SLAVE_ACTIV_57 BOOL R Slave operational on the bus: device 57 %IWr.m.c.38.8
SLAVE_ACTIV_58 BOOL R Slave operational on the bus: device 58 %IWr.m.c.38.9
SLAVE_ACTIV_59 BOOL R Slave operational on the bus: device 59 %IWr.m.c.38.10
SLAVE_ACTIV_60 BOOL R Slave operational on the bus: device 60 %IWr.m.c.38.11
SLAVE_ACTIV_61 BOOL R Slave operational on the bus: device 61 %IWr.m.c.38.12
SLAVE_ACTIV_62 BOOL R Slave operational on the bus: device 62 %IWr.m.c.38.13
SLAVE_ACTIV_63 BOOL R Slave operational on the bus: device 63 %IWr.m.c.38.14

Slave in Stop The table below shows the words 4 W. m c. 43t0 %4 W . m c. 46:

State

Standard symbol Type Access | Description Address
SLAVE_STOPPED_1 16 INT R Stopped slaves from 1 to 16 %IWr.m.c.43
SLAVE_STOPPED_17_32 INT R Stopped slaves from 17 to 32 %IWr.m.c.44
SLAVE_STOPPED_33 48 INT R Stopped slaves from 33 to 48 %IWr.m.c.45
SLAVE_STOPPED_49 64 INT R Stopped slaves from 49 to 63 %IWr.m.c.46

154

35013944 01 November 2007

Language Objects

Pre-Operational

The table below shows the words %4 W . m c. 51 to %4 W . m c. 54:

Slaves

Standard symbol Type Access | Description Address
SLAVE_PREOP_1_16 INT R Pre-operational slaves from 1 to 16. %IWr.m.c.51
SLAVE_PREOP_17_32 INT R Pre-operational slaves from 17 to 32. %IWr.m.c.52
SLAVE_PREOP_33_48 INT R Pre-operational slaves from 33 to 48. %IWr.m.c.53
SLAVE_PREOP_49 64 INT R Pre-operational slaves from 49 to 63. %IWr.m.c.54

Master Cycle

The table below shows the meaning of status words relative to the time cycle of the

Time master:

Addresses Description Meaning

%IWr.m.c.59 Minimum master cycle time Minimum value of the CANopen master cycle time in ms.
%IWr.m.c.60 Current master cycle time Current value of the CANopen master cycle time in ms.
%IWr.m.c.61 Maximum master cycle time Maximum value of the CANopen master cycle time in ms.
Reset The table below shows the meaning of the command word of the CANopen master:
Emergency

Default

Addresses Description Bit meaning

%QWr.m.c.0 Command word of the Bit 0=1: Reset emergency slaves bitlist. This bit is set to zero

CANopen master

after the reset of the bitlist.

Bit 1. Reset bit 8 of the communication status of the master
(%IW0.0.2.0). The bit 8 indicates that the task cycle is faster
than the CANopen master cycle. The bit 1 is set to zero after
the reset of the bit 8.

Bit 2 to bit 15: Reserved.

35013944 01 November 2007

155

Language Objects

Details of T_COM_CO_BMX Type Explicit Exchange Objects of the IODDT

At a Glance This part shows the explicit exchange language objects for the CANopen master.

These objects are exchanged on the application's request, using the instruction
READ_STS.

The parameters r,m and ¢ shown in the following tables represent the topological
addressing of the module. Each parameter has the following signification:

e r: represents the rack number,
e m: represents the position of the module on the rack,
e c:represents the channel number.

Execution The table below shows the meanings of channel exchange control bits from channel

Indicator: EXCH_STS (%W . m c. 0):

EXCH_STS Symbol Type |Access |Description Number
STS_IN_PROGR |BOOL |R Status parameter read in progress | %MWr.m.c.0.0

Exchange The table below presents the meaning of the run report bits of the channel

Report: EXCH_RPT (%W . m c. 1):

EXCH_RPT Symbol Type Access | Description Number
STS_ERR BOOL R Error while reading channel status | %MWr.m.c.1.0

156 35013944 01 November 2007

Language Objects

Standard

Channel Faults:

CH_FLT

The following table explains the meaning of the CH_FLT (%W . m c. 2) status word

bits. Reading is performed by a READ_STS:

Object

Function

Meaning

%MWr.m.c.2

Status of the CANopen
Master

Bit 0=1: The CANopen Master is not in operationnal state.
Bit 1=1: Slave has an error, one or more slaves have errors or are not
in operationnal state.

Bit 2: Reserved.

Bit 3=1: Configuration error.

Bit 4 to bit 7: Reserved.

Bit 8 to Bit 10: CAN ERR led:

000 = off,

001 = single flash,

010 = double flash,

011 = triple flash,

111 =on.

Bit 11 to Bit 13: CAN RUN led:
® 001 = single flash,

® 100 = blinking,

e 111=on.

Bit 14 to Bit 15: Reserved.

%MWr.m.c.3

Generic error count

Number of received emergency messages with code 10xxH

%MWr.m.c.4

Device hardware error
count

Number of received emergency messages with code 50xxH

%MWr.m.c.5

Device software error count

Number of received emergency messages with code 60xxH

%MWr.m.c.6

Communication error count

Number of received emergency messages with code 81xxH

%MWr.m.c.7

Protocol error count

Number of received emergency messages with code 82xxH

%MWr.m.c.8

External error count

Number of received emergency messages with code 90xxH

%MWr.m.c.9

Device-specific

Number of received emergency messages with code FFxxH

35013944 01 November 2007

157

Language Objects

Language Objects Associated with Configuration

At a Glance

Configuration

The configuration of a CANopen master is stored in the configuration constants

(KW .

The parameters r,m and ¢ shown in the following tables represent the topologic
addressing of the module. Each parameter has the following signification:

e r: represents the rack number,
e m:represents the position of the module on the rack,
e c:represents the channel number.

The following table lists all process control language objects associated

Objects configuration of CANopen network:
Number Type | Function Description
%KWr.m.c.0 |INT Constant value used by | Least significant byte: 16#00:
the system o O0:reset,
® 1: maintain.
Most significant byte: 16#37.
%KWr.m.c.1 |INT Baud rate (see Length Values are encoded :
Limitations of the e 0=1000 Kbaud,
CANopen Network, p. 23) | @ 2 =500 Kbaud,
e 3 =250 Kbaud,
® 4 =125 Kbaud,
e 5 =150 Kbaud,
® 6 =20 Kbaud.
%KWr.m.c.2 | INT COB-ID Synchronization | Default value: 0080h.
%KWr.m.c.3 |INT Synchronization period 1..1000 ms.
%KWr.m.c.4 | INT Configuration bits Size of input image zone TOR in the memory (in number of bits).
%KWr.m.c.5 |INT Configuration bits Size of output image zone TOR in the memory (in number of
bits).
%KWr.m.c.6 | INT Configuration bits Address of the start of the input image zone TOR(%M).
%KWr.m.c.7 | INT Configuration bits Address of the start of the output image zone TOR (%M).
%KWr.m.c.8 |INT Configuration bits Size of input image zone in the memory (in number of words).
%KWr.m.c.9 | INT Configuration bits Size of output image zone in the memory (in number of words).
%KWr.m.c.10 | INT Configuration bits Address of the start of the input image zone (%MW).
%KWr.m.c.11 | INT Configuration bits Address of the start of the input image zone (%6MW).

158

35013944 01 November 2007

Language Objects

9.4

Emergency objects

Emergency Objects

At a Glance

Error Code 00xx

Error Code 10xx

Emergency objects (EMCY) have been defined for CANopen for diagnostic

applications.

The COB-ID of these objects contain the identity of the node of the device which

produced the emergency message. The COB-ID of emergency objects are

constructed in the following manner:

COB-IDgpcy = 0x80 + node identity

The data field of an EMCY object is composed of 8 bytes containing:

e Emergency error code (2 bytes),
e the error register (1 byte),
e The factory-specific error information (5 bytes).

The following illustration shows the structure of an EMCY object:
Error Information
manufacturer specific

COB-ID

Error code

Register
error

0x80+node-ID

Byte O

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 6

Byte 7

Note: the contents of the error code and error register are specified by CiA.

With the Er r or tab (see Slave Diagnostics, p. 128), you can consult the 4 last
emergency messages received, in chronological order.

The following table describes the content of error code 00xx:

Error code (hex)

Description

00xx

Error reset to zero or no error

The following table describes the content of error code 10xx:

Error code (hex)

Description

10xx

Generic error

35013944 01 November 2007

159

Language Objects

Error Code 2xxx

Error Code 3xxx

Error Code 4xxx

Error Code 50xx

Error Code 6xxx

The following table describes the content of error code 2xxx:

Error code (hex) Description
20xx Current
21xx Current, input side of the device
22xx Internal current to the device
23xx Current, output side of the device

The following table describes the content of error code 3xxx:

Error code (hex) Description
30xx Voltage
31xx Principal voltage
32xx Internal voltage to the device
33xx Output voltage

The following table describes the content of error code 4xxx:

Error code (hex) Description
40xx Temperature
41xx Ambient temperature
42xX Device temperature

The following table describes the content of error code 50xx:

Error code (hex)

Description

50xx

Device hardware

The following table describes the content of error code 6xxx:

Error code (hex) Description
60xx Device software
61xx Internal software
62xx User software
63xx Data set

160

35013944 01 November 2007

Language Objects

Error Code 70xx

Error Code 8xxx

Error Code 90xx

Error Code Fxxx

The following table describes the content of error code 70xx:

Error code (hex)

Description

70xx

Additional modules

The following table describes the content of error code 8xxx:

Error code (hex) Description
80xx Monitoring
81xx Communication
8110 CAN overflow (objects lost)
8120 CAN in passive error mode
8130 Life Guard error or Heartbeat error
8140 Recovered from bus
8150 Collision during COB-ID transmission
82xx Protocol error
8210 PDO not processed due to length error
8220 PDO length exceeded

The following table describes the content of error code 90xx:

Error code (hex)

Description

90xx

External error

The following table describes the content of error code Fxxx:

Error code (hex)

Description

FOxx

Additional functions

FFxx

Specific to the device

35013944 01 November 2007

161

Language Objects

162 35013944 01 November 2007

Language Objects

9.5

The IODDT Type T_GEN_MOD Applicable to All
Modules

Details of the Language Objects of the IODDT of Type T_GEN_MOD

At a Glance

Observations

List of Objects

All the modules of Modicon M340 PLCs have an associated IODDT of type
T_GEN_MOD.

In general, the meaning of the bits is given for bit status 1. In specific cases an
explanation is given for each status of the bit.

Some bits are not used.

The table below presents the objects of the IODDT.

Standard symbol Type Access | Meaning Address
MOD_ERROR BOOL R Module error bit %Ir.m.MOD.ERR
EXCH_STS INT R Module exchange control word %MWr.m.MOD.0
STS_IN_PROGR BOOL R Reading of status words of the module in %MWr.m.MOD.0.0
progress
EXCH_RPT INT R Exchange report word %MWr.m.MOD.1
STS_ERR BOOL R Fault when reading module status words %MWr.m.MOD.1.0
MOD_FLT INT R Internal error word of the module %MWr.m.MOD.2
MOD_FAIL BOOL R Internal error, module failure %MWr.m.MOD.2.0
CH_FLT BOOL R Faulty channel(s) %MWr.m.MOD.2.1
BLK BOOL R Terminal block fault %MWr.m.MOD.2.2
CONF_FLT BOOL R Hardware or software configuration fault %MWr.m.MOD.2.5
NO_MOD BOOL R Module missing or inoperative %MWr.m.MOD.2.6
EXT_MOD_FLT BOOL R Internal error word of the module (Fipio extension | %MWr.m.MOD.2.7
only)
MOD_FAIL_EXT BOOL R Internal fault, module unserviceable (Fipio %MWr.m.MOD.2.8
extension only)
CH_FLT_EXT BOOL R Faulty channel(s) (Fipio extension only) %MWr.m.MOD.2.9
BLK_EXT BOOL R Terminal block fault (Fipio extension only) %MWr.m.MOD.2.10
CONF_FLT_EXT BOOL Hardware or software configuration fault (Fipio | %MWr.m.MOD.2.13
extension only)
NO_MOD_EXT BOOL R Module missing or inoperative (Fipio extension | %MWr.m.MOD.2.14
only)

35013944 01 November 2007

163

Language Objects

164 35013944 01 November 2007

Quick start : example of CANopen

implementation

IV

At aglance

Overview

What's in this
Part?

This section presents an example of CANopen implementation.

This part contains the following chapters:

Chapter Chapter Name Page
10 Description of the application 167
11 Installing the application using Unity Pro 171
12 Starting the Application 209

35013944 01 November 2007

165

Example of CANopen implementation

166 35013944 01 November 2007

Description of the application

10

Overview of the application

At aglance The application described in this document is used for the driving of a working
mobile.

The mobile goes to different working positions following a defined position
sequence. The mobile stops for few seconds at these positions.

The application’s control resources are based on an operator screen which shows
the status of the various position sensors and the actual mobile position value. A
warning message blinks when the mobile is moving.

35013944 01 November 2007 167

Description of the application

Illustration of the This is the application’s final operator screen:
application
Start Sequence Stop Sequence

Start Point Position A Position B Position C

The equipments can be connected as follow:
BMX P34 2010

Lexium Motor

CANopen Bus

Advantys STB

168 35013944 01 November 2007

Description of the application

Operating mode

The operating mode is as follows:

e A Start Sequence button is used to start the defined sequence.

e In this example, the mobile first goes to B position then to the A position and, at
the end, to the C position, before coming back to the Start Point, waiting for a new
start-up request.

e The mobile stops for few seconds at each position to simulate an action time.

e A Stop Sequence button interrupts the mobile sequence. The mobile stops to the
last targeted position and comes back to the Start Point, waiting for a new start-
up request.

35013944 01 November 2007

169

Description of the application

170 35013944 01 November 2007

Installing the application using

Unity Pro

11

At aglance

Subject of this
chapter

What's in this
Chapter?

This chapter describes the procedure for creating the application described. It
shows, in general and in more detail, the steps in creating the different components
of the application.

This chapter contains the following sections:

Section Topic Page
111 Presentation of the solution used 173
11.2 Developping the application 176

35013944 01 November 2007

171

Application using Unity Pro

172 35013944 01 November 2007

Application using Unity Pro

11.1 Presentation of the solution used

At a glance

Subject of this This section presents the solution used to develop the application. It explains the

section technological choices and gives the application’s creation timeline.

What's in this This section contains the following topics:

ion?

Section” Topic Page
Technological choices used 174
The different steps in the process using Unity Pro 175

35013944 01 November 2007 173

Application using Unity Pro

Technological choices used

At a glance

Technological

There are several ways of writing a mobile driving application using Unity Pro. The
one proposed, uses a Lexium 05 servo drives and Advantys STB island set up on a
CANopen network.

The following table shows the technological choices used for the application:

choices Objects Choices used

Lexium Operating Mode Use of the Positioning Mode. This mode allows you to send a
target position to the Lexium 05 servo drives through the
CANopen network.

Sensor Interface Use of a STB Advantys. This device is an assembly of
distributed 1/0, power, and other modules that function
together as an island node on an open field bus network

Supervision screen Use of elements from the library and new objects.

Main supervision program | This program is developed using a sequential function chart
(SFC), also called GRAFCET. The various sections and
transitions are created in Ladder Diagram (LD) language and
in Structured Text language (ST).

Note: This example shows PDO and SDO exchange towards a speed drive.

However, for speed drive configuration and control, the use of Motion Function

Block is recommended.

174 35013944 01 November 2007

Application using Unity Pro

The different steps in the process using Unity Pro

At aglance

Description

The following logic diagram shows the different steps to follow to create the

application. A chronological order must be respected in order to correctly define all

of the application elements.

Description of the different types:

Launching of Unit Pro
and
selection of the processor

v v

Configuration of project
in
Configuration

v v

Configuration of I/O derived variables
in
Configuration

v v

Creation of variables
in
Variables & FB instances

v v

Creation of Section
in
Programs/Tasks/MAST

v v

Creation of an animation table
in
Animation tables

v v

Creation of an operator screen
in
Operator screens

v v

Generation of project, connection to API
and
switch to RUN mode

35013944 01 November 2007

175

Application using Unity Pro

11.2

Developping the application

At a glance

Subject of this
section

What's in this
Section?

This section gives a step-by-step description of how to create the application using

Unity Pro.

This section contains the following topics:

Topic Page

Creating the project 177
Configuration of the CANopen Bus 178
Configuration of the CANopen Master 182
Configuration of the equipments 184
Declaration of variables 188
Creating the program in SFC for managing the move sequence 192
Creating a Program in LD for Application Execution 197
Creating a Program in LD for the operator screen animation 199
Creating a program in ST for the Lexium configuration 200
Creating an Animation Table 203
Creating the Operator Screen 205

176

35013944 01 November 2007

Application using Unity Pro

Creating the project

At aglance Developing an application using Unity Pro involves creating a project associated
with a PLC.

Note: For more information, see Unity Pro online help (click on ?, then Uni t y, then
Unity Pro,then Qper at e nodes, and Proj ect confi gurati on).

Procedure for The table below shows the procedure for creating the project using Unity Pro.

creating aproject .
gaproj Etape |Action
1 Launch the Unity Pro software (XL version in this example).
2 Click on File then New to select a CANopen Master PLC (BMX P34 2010 for
example):
New Project
PLC Version | Description
[=1-- M340 M340
BMX P34 1000 01.00 | CPU 340-10 Modbus Cancel I
BMX P34 2010 01.00 | CPU 340-20 Modbus CANopen
BMX P34 2020 01.00 | CPU 340-20 Modbus Ethernet M
BMX P34 2030 01.00 | CPU 340-20 Ethernet CANopen
[+~ Premium Premium
[+ Quantum Quantum
3 Confirm with OK.

35013944 01 November 2007 177

Application using Unity Pro

Configuration of the CANopen Bus

At a glance Developing a CANopen application involves choosing the right slave devices and
appropriate configuration.

lllustration of the The following screen shows the configured CANopen bus:
CANopen bus

m CANopen O]

Bus: | 3 [CANopen comm head 01.00 [¥] Connections configured : 2

&
Advantys STB

QR ‘

)

178 35013944 01 November 2007

Application using Unity Pro

CANopen bus
Configuration

The table below shows the procedure for selecting the CANopen slaves:

Step |Action

1 |Inthe Proj ect brower, double-click on Confi gurati onthenon3 :
window opens.

CANopen. The CANopen M cro

2 | In the CANopen M cr o window, double-click on the node where the slave must be linked to.
Result: the following window opens.

New equipment

Topological Address: [1..63]

1
Cancel |
L

Node-ID =
Part Number Description A Help
[=I-CANopen drop
~Discrete
[=}—-Motion
ATV31 V1 1 Altivar 31 CANopen Slave DSP402 (TEATV3111E.eds
-ATV31_V1_2 Altivar 31 CANopen Slave DSP402 (TEATV3112E.eds
ATV31T_V1_3 Altivar 31 CANopen Slave DSP402 (TEATV3112E.eds
ATV6T_VI_1 ATV6T (TEATVBTT1E eds)
ATV71 V1 ATV71 (TEATVTIT1E.eds)
IclA_IFA IcIA-IFA CANopen (ICIA-IFA.eds)
IclA_IFE IcIA-IFE CANopen (IclA-IFE.eds)
IclA_IFS IcIA-IFS CANopen (IcIA-IFS eds)
IclA_NO065 IclAN065 based on profile DS301V4.01 and DSP402V2. ...
Lexium05 DCX170 CANopen (TEDCX170_0100E.eds)
““““““ Lexium05_MFB LXMO5A PLCopen (LEXIUM05_MFB.EDS) -
Lexium15_HP LEXIUM 15 HP servodrive (Lexium 15 MP HP.eds)
““““““ Lexium15_MP LEXIUM 15 MP servodrive (Lexium 15 MP HP.eds) |L|

Drop end communicator:

3 | Inthe New Devi ce window, enter the node number (55), then double click on Mot i on and select the
Lexi unD5.

35013944 01 November 2007 179

Application using Unity Pro

Step |Action

4 | Confirm with OK.
Result: the slave module is declared.

| CANopen N

Buss | 3 [CANopen comm head 01.00 [~] Connections configured: 1

5 | Follow the same procedure to declare the Advantys STB island. In the New Devi ce window, enter the node
number (54), then double click on O her and select the STB_NCO 2212.

Note: This example shows PDO and SDO exchange towards a speed drive.
However, for speed drive configuration and control, the use of Motion Function
Block is recommended.

Note: This Advantys STB island configuration has to be set up using the Advantys
Configuration Software.

180 35013944 01 November 2007

Application using Unity Pro

STB island
configuration

The table below shows the procedure to configure a STB island with Advantys
Configuration Software:

Step Action
1 Open Advantys Configuration Software Version 2.2.0.2 and create a new STB
Island.
2 Inserta STB NCO2212 supply module, a STB DDI3420 discrete input module and
a STB DD03410 discrete output module on the island.
3 Save the configuration and click on Fi | e/ Export for exporting the island in DCF
format.
The Export window opens:
Export
—Target Information
Directory | D:\DATA
Filename | TestNC02212.dcf [~ Short file name
Prefix |
—Export Format ~PLC Information
@ DCEF (for TwidoSoft, CoDeSys, etc.) Address Type v
O EDS (for SyCon, etc.) Topological Adress ——————
Connection Point
© GSD (for; SyCon, etc.) Rack
Slot
O SCY (for PL7)
© TXT (for, Concept) —Memory Address —4—M8 —M
Input |—
O XSY (for Unity Pro) Output
Help | I OK | Cancel |
4 Click on OK
5 Launch Unity Pro and open a project where an STB island will be used.
6 Add the STB equipment in the bus editor.
7 Right-click on the STB equipment then click on Open t he nodul e
8 In the PDOtab, click on the | nport DCF button (see Configuration of the STB,
p. 185).
9 Click on OK to validate.

35013944 01 November 2007

181

Application using Unity Pro

Configuration of the CANopen Master

At a glance

CANopen Master

PLC configuration.

Developing a CANopen application involves choosing the right CANopen Master

The table below show the procedure for configuring the CANopen Master PLC:

PLC
configuration
Step | Action
1 In the Proj ect browser double-click on Confi gur ati on then on 0: BM5 XBP 0800 then on
0: BMX P34 2010. double click on CANopen to access to the CANopen Conm Head window.
2 In the input and output configuration zones, enter the i ndex of the 1st word (%wWYJ and the needed
nunmber of words.
3 Inthe Bus Par anet er zone, select the application t ransmi ssi on speed. In this example, select 500
kBauds.
[l 0.0 : CANopen : CANopen comm head |
‘ Communicator head CANopen ‘
] CcANopen comm head [l Config|
Channel 2 (CANopen) | | - Inputs ~ Outputs
Nb. of words (%MW) [308 3: Hold Reset
Index of 1st %MW [0 3: © 9
Nb of words (%MW) |255 3:
Nb. of bits (%M) |32 3: ’
Index of 1st %MW [400 =
Index of 1st %M |0 3:
Nb. of bits (%M) 32 3:
Index of 1st %M 32 =
__ Function: ~Bus parameters
| CANopen |:, Transmission Speed 500 : kBaud
Task : SYNC message COB-ID | 128
| MAST |v | SYNC message periode 100 ms
4 Click on the button in the toolbarto validate the configuration.
182

35013944 01 November 2007

Application using Unity Pro

Note: When the project is build, warning and error messages can be displayed in
the output window. If it not displayed, click on Vi ew Qut put W ndow.
Warning messages indicates that there are more configured words than necessary

on the bus.
Error messages indicate that configured words are missing.

35013944 01 November 2007 183

Application using Unity Pro

Configuration of the equipments

At a glance Once the slave is declared, it's possible to have access to its configuration window.

Configuration of The table below shows the procedure for the Lexium configuration:
theLexium Servo

Drives
Step Action
In the Pr oj ect browser, double-click on Confi gurati on then 3: CANopen.
2 In the CANopen window, double-click on the Lexium representation. The Lexium configuration window
opens.
Click on the PDOtab to see the PDO configuration, the variables and their topological addresses.
For this example, select PDO2(St ati c) inthe Transmit (%) andthe Recei ved (%)) windows.
[F! PDO] fRj Error control] iR Config)
Transmit (%)
PDO [r. Ty... [Inhibi... | Even... | Symbol | Topo. Add.
=~ 1> PDO1(.. = 255 0 0 Variables
B lexium... %IW\3550.. | | Display only umapped variables
255 “ ﬂ Parameter Name ~| Ind...
(] Status... %IW\3.55\0...
- RAMPsym 3006:01
(] Positi... %ID\3.55\0... 10 _act 3008:01
=[] PDO3... ANAT_act 3009:01
! Status... %I\W\3.55\0... .. | [ANA2_act 3009:05
° PLCopenRx1 301B:05
ID\3.5510...
"""" = ﬁ[? P\[/)EéOZI... %ID\3.55\0. PLCopenRx2 B0
PLCopenTx1 301B:07
PLCopenTx2 301B:08
Receive (%Q) JOGactivate 301B:09
_actionStatus 301C:04
_p_actRAMPusr 301F:02
CUR_|_target 3020:04
SPEEDnN_target 3021:04
PTPp_abs 3023:01
. | %QW3.55\0... ... | || PTPp_relpref 3023:03
PTPp_target 3023:05
. %QD\3.5500... PTPp_relpact 302306
GEARdenom 3026:03
) | %QW3.55\0... ... | || GEARnum 3026:04
= Target... | %QD\3 55\0... Controlword 6040:00
,,,,,,,, = \% Po04 Statusword 6041:00
position actual valu... | 6063:00
Kl |
Click on the Error control tab and setthe Node Heartbeat producer tinme to300ms
Click on the button in the toolbarto validate the configuration.
7 Close the window.

184

35013944 01 November 2007

Application using Unity Pro

Configuration of The table below shows the procedure to load the configuration defined with the

the STB Advantys Configuration software:
Step |Action
1 |Inthe Proj ect browser, double-click on Confi gurati onthen 3: CANopen.
2 | Inthe CANopen window, double-click on the Advantys STB representation. The STB NC0O2212 configuration
window opens.
3 |In Functi on zone, select Aut oconf .
Function:
|Autoconf v
In this example, we use the Aut oconf function because autoconfigurable modules are inserted on the STB
island (see Advantys STB configuration, p. 214).
4 | Click on the PDOtab to see the PDO configuration, the variables and their topological addresses. Click on the
right button of the horizontal scroll bar to see the | nport DCF button.
5 | Clickon | nport DCF button to load the DCF configuration file generated with the Advantys Configuration
Software.
[F] PDO] i Error control] i Config]
Transmit (%l) A
— (Import DCF
PDO [r.7y... [inhibi... [Even...| Symbol | Topo. Addr. [%M... [CO... [Index
=l \ PDO1 255 0 16#182 Variables
Digital 8 .. %IW\3.20.0... %MW184 6000:01| (| Display only umapped variables
(1 Digital 8 ... %IW\3.20.0... | %MW185 600002| | arameter Name T ind
Island Diagnostics: ...| 4000:00
Island Diagnostics: I..| 4001:00
Configured Nodes 1...| 4002:01
Configured Nodes 3...| 4002:02
Configured Nodes 4..| 4002:03
Configured Nodes 6..| 4002:04
Configured Nodes 8..| 4002:05
Configured Nodes 9..| 4002:06
Receive (%Q) Configured Nodes 1..| 4002:07
e 5 Configured Nodes 1..| 4002:08
PDO | Tr. Ty... [Inhibi... | Even...| Symbol [Topo. Addr. | %M... | CO... | Index Cptonna Nodes 1. 400301
= \ PDO 1 285 0 16#202 Optionnal Nodes 3... | 4003:02
Digital 8 .. %QW\3.210.0... %MW559 6200:01 Optionnal Nodes 4... | 4003:03
Optionnal Nodes 6... | 4003:04
Optionnal Nodes 8... | 4003:05
Optionnal Nodes 9... | 4003:06
Optionnal Nodes 1... | 4003:07
Optionnal Nodes 1... | 4003:08
Nodes with Error 16...| 4004:01
Nodes with Error 32..., 4004.02
Nodes with Error 48...| 4004:03
Nodes with Error 64...| 4004.04
Kl |
6 |Clickonthe Error control tab and setthe Node Heartbeat producer tineto300ms
7 Click on the button in the toolbarto validate the configuration.

35013944 01 November 2007 185

Application using Unity Pro

Step |Action

8 | Close the window.

For more information about STB configuration, see STB island configuration, p. 235

Declarationof /O The table below shows the procedure to load the configuration defined with the

objects Advantys Configuration software:
Step |Action
1 |Openthe\3.55\0.0 : Lexi unD5 window by clicking on the Lexium module icon
in the CANopen window. Click on the Lexi unD5 and then on the | / O obj ect tab.
2 | Click on the I/O object prefix address %CH then on the Updat e gri d button, the
channel address appears in the 1/0 object grid.
3 | Click on the line 4CH\ 3. 55\ 0. 0 and then, inthe | / O obj ect creati on window,
enter a channel name in the prefi x for nane zone, Lexi umfor example.
4 | Now click on different Implicit 1/O object prefix adresses then on update grid
button to see the names and addresses of the imlicit I/O objects.
[Overview] [F{] CANopen]E@ IIO objects |
— i f Address Name
1/0 variable creation T3 .550.0.0 Toxum
Prefixe for name: | 2| %ID\3.55\0.0. Lexium.CapTPos
3[%ID\3.55\0.0.0.2 _epr_Z_ 2Pos
Type: | = 41%ID\3.55\0.0.0.4[Lexjum.param?7
O 5 \3.5510.0.0.6 Lexium.param2/
18t 6] %ID\3.55\0.0.0.8 _[Lexjum.p_actRAM
. 7 D\3.55\0.0.0. Lexium.position_a
Comment: | 8 %ID\3.5510.0.0.12_[Lexium.position
90 3\~.55\00.~.~. _exium.YeIoci a
—| i 3.55\0.0.0.16 [Lexium.JO_ac
Ol 1] %IW\3.55\0.0.0.17 [Lexium.ANAT_ac]
Channel: 7 %CH [12[%IW\3.5510.0.0.18[Lexium.ANAZ_acf]
- 13[%IW\3.55\0.0.0.19 [Lexium.CapTCou
Configuration I~ %KW [~ %KD [~ %KF Selectall 4] %W\3.55\0.0.0.20 | Lexium.Cap2Cou
System I~ %MW _§| 6[W\3.55\0.0.0.21 [Texium.actionStat
Stat e g 0 \5;\? 22 |Lexium.Statuswd
Bl ° Unselect all H :9910.0. Cexium.param?
Parameter AW 94D A AT R BT
Command I~ %MW [~ %MD [~ %MF éﬁ) QD\3.550.0.0.6__| Lexium.param35
R e
I~ %Q & %QW 2 %QD I %QF gl ? Qg\y.sské.u 0. 3 LCex um.C_EI_EAR;rluP
©QD\3.550.0.0. exium.Tari
—Update 25| %QD\3.55\0. Lexium.Profile_Ve|
56 ©QD\3.5510.0.0. _exum.;ar et \ée
; 7 .5510.0.0.20 [Lexium.Param
U | 2_8| W\3.55\0.0.0.21 [Lexium.JOGactiv:
29 W\3.55\0.0.0.22 [Lexium.CUR T ta
Filter on usage | 30] %QW\3,55\0.0.0.23 | Lexi um.SPEE%)g
31] %QW\3.55\0.0.0.24 |Lexium.param
132] "/?aQW\3.55\0.0.0.25 exium.Controlw|
186

35013944 01 November 2007

Application using Unity Pro

Note: Repeat the same procedure to create a CANopen I/O object named
BusMast er (%CHO0.0.2). In the PLC bus window, double-click on the CANopen
port then click on CANopen conm head to access the | / O obj ect s tab.

35013944 01 November 2007 187

Application using Unity Pro

Declaration of variables

At a glance All of the variables used in the different sections of the program must be declared.
Undeclared variables cannot be used in the program.

Note: For more information, see Unity Pro online help (click on ?, then Uni t y,
then Uni ty Pro, then Qperate nodes, and Data editor).

Procedure for The table below shows the procedure for declaring application variables:
declarin -
. 9 Step Action
variables
1 InProject browser / Variables & FB instances, double-click on

El ementary vari abl es

2 In the Dat a edi t or window, select the box in the Name column and enter a
name for your first variable.

Now select a Type for this variable.

4 When all your variables are declared, you can close the window.

188 35013944 01 November 2007

Application using Unity Pro

Variables used

The following table shows the details of the variables used in the application:

;c;)rptlri]:ation Variable Type Definition

Action_Time TIME Mobile stopping time at each position.

Configuration_Done BOOL The Lexium configuration is done.

Homing_Done BOOL The definition of the origin point is done.

index_subindex DINT CANopen parameter adresses for the WRITE_VAR
block.

Lexium_Config_Step INT Configuration steps (program)

Lexium_Disabling INT Shutdown command

Lexium_operation_enable | INT Command to start the Lexium drive.

Mobile _at_Position_A BOOL Mobile at the A position.

Mobile _at_Position_B BOOL Mobile at the B position.

Mobile _at_Position_C BOOL Mobile at the C position.

Mobile_at_start_position BOOL Mobile at the start position.

Mobile_in_Progress BOOL The mobile is moving.

New_SetPoint BOOL Start the next move.

Operation_done BOOL The mobile operation is done.

Position_A DINT First positioning value.

Position_B DINT Second positioning value.

Position_C DINT Third positioning value.

Ready_For_Stop BOOL The mobile goes to the last targeted position
indicated before stopping the application. Then it
comes back to the start position.

Run BOOL Start of the sequence.

Sequence_Number INT Number of displacements made by the mobile.

Start_Configuration EBOOL Start the Lexium configuration.

Stop BOOL The mobile stops the sequence and comes back to
the start point.

Target_Reached BOOL The target position is reached.

35013944 01 November 2007

189

Application using Unity Pro

The following screen shows the application variables created using the data editor :

Il Data Editor)|
Variables | DDT types | Funcfion blocks | DFB fypes |

Filter
(Y| Neme [V EDT [DDT [IoDDT ‘
Name | Type w | Address w | Value [Comment w
=] Action_Time TIME t#3s

A Configuration_Done BOOL...
@ Homing_Done BOOL %IW\3.55\0.0.0.22.14

index_subindex DINT

.4 Lexium_Config_Step INT

...y Lexium_Disabling INT 6

.4y Lexium_operation_enable INT 15

-..{g) Mobile_at_Position_A BOOL

) Mobile_at_Position_B BOOL

%) Mobile_at_Position_C BOOL

) Mobile_at_Start_Position BOOL

~~@ Mobile_In_Progress BOOL

.(g) New_SetPoint BOOL %QW\3.55\0.0.0.25.4

.4y Operation_Done BOOL

Position_A DINT 50000

.. Position_B DINT 100000

) Position_C DINT 200000

) Ready_For_Stop BOOL

- Run BOOL

- Sequence_Number INT

Q) Start_Configuration EBOOL

A9 Stop BOOL

-~ Target_Reached BOOL %IW\3.55\0.0.0.22.10

2 o

190

35013944 01 November 2007

Application using Unity Pro

Note: At start-up, the Lexium 05 isin Ready to sw tch on state (rdy is
displayed). To be able to drive the motor, the Lexium must be in Oper at i on
enabl e state. To switch in this state, a bus command sets the 4 last bits of the
Lexium control word to ‘1’ (00001111 (binary) = 15 (decimal)).

To switch the Lexium 05 to the Ready t 0 swi t ch on state, a bus command sets
the sixth and the seventh bit of the Lexium control word to ‘1’ (00000110 (binary) =
6 (decimal))

For more information on Lexium control word, consult the Lexium manufacturer
manuel

35013944 01 November 2007 191

Application using Unity Pro

Creating the program in SFC for managing the move sequence

At a glance

The main program is written in SFC (Grafcet). The different sections of the grafcet
steps and transitions are written in LD. This program is declared in a MAST task,
and will depend on the status of a Boolean variable.

The main advantage of SFC language is that its graphic animation allows us to
monitor in real time the execution of an application.

Several sections are declared in the MAST task:

e The Move_Sequence (See lllustration of the Move_Sequence section, p. 195)
section, written in SFC and describing the operate mode.

e The Application (See Creating a Program in LD for Application Execution,

p. 197) section, written in LD, which executes the mobile action delay time and
resets the positioning start bit New_Set poi nt .

e The Operator_Screen_Animation (See Creating a Program in LD for the
operator screen animation, p. 199) section, written in LD which is used to animate
the operator screen.

e The Lexium_Config (See Creating a program in ST for the Lexium configuration,
p. 200) section, written in ST and describing the different steps of the Lexium
configuration.

192

35013944 01 November 2007

Application using Unity Pro

In the project browser, the sections are represented as follow:

Project Browser
%E'n Structural View

{3 Station

| Configuration

D Derived Data Types

{7 Derived FB Types

(] Variables & FB instances
~{__] Motion

(] Communication

{7 Program

{3 Tasks
€3

Move_Sequence

Lexium_Config

@ SR Sections

{_] Animations Tables
{_] Operator Screens
~{_7] Documentation

Lo B rn
Eo)

Operator_Screen_Animatig

with the PLC in RUN

Note: The LD, SFC and FBD-type sections used in the application must be
animated in online mode (See Execution of Application in Standard Mode, p. 209),

CANopen Master cycle.

Note: If task cycle is faster than CANopen Master cycle, outputs can be
overwritted. To avoid that, it is recommended to have a task cycle higher than the

35013944 01 November 2007

193

Application using Unity Pro

Procedure for The table below shows the procedure for creating an SFC section for the application.
Crea}mg an SFC Step Action
Section
1 In Proj ect Browser\ Program Tasks, double-click on MAST.
2 Right click on Sect i on then select New sect i on. Give your section a name
(Movement_sequence for the SFC section) then select SFC language.
3 The name of your section appears, and can now be edited by double clicking on
it.
4 The SFC edit tools appear in the window, which you can use to create your
Grafcet.

For example, to create a step with a transition:

® To create the step, click on [:I then place it in the editor,

® To create the transition, click on i

under the preceding step).

then place it in the editor (generally

194 35013944 01 November 2007

Application using Unity Pro

lllustration of the
Move_Sequence
section Init

The following screen shows the application Grafcet. There is no condition defined:

Start_Corfiguration

L

@
>

um_Configuration

Configuration_Done

>

Move_to_Next_Pogition

Back_to_$tart_Point

—— ——
Target_Reached
Retiirn_to_Start_Foint obile_Action
—— —
Target_Reached Operation|_Done

isable_Lexium > Move_to_Next_Position

Lexium_glisabled
—

For actions and transitions used in the grafcet, see Actions and transitions, p. 239

Note: For more information on creating an SFC section, see Unity Pro online help

(click on ?, then Uni ty, then Uni ty Pro, then Oper at e nodes, then
Pr ogr amm ng and SFC edi t or

35013944 01 November 2007 195

Application using Unity Pro

Description of
the
Move_Sequence
Section

The following table describes the different steps and transitions of the
Move_Sequence Grafcet:

Step / Transition

Description

Init

This is the initial state.

Start_Configuration

This transition is active when the variables:
® Stop=0,
® Run=1.

Lexium_Configuration

The Lexium 05 is enabled and the 0 position is defined (using the
Lexium’s Homing function).

Configuration_done

The transition is active when the Lexium is initialized.

Move_to_next_position

The next target position is loaded in the Lexium 05. When this step
is activated, the sequence number is incremented.

Target_reached

This variable is set to ‘1’ by the Lexium 5 when the target position
is reached.

Mobile_action

The mobile is at the target position and is operating an action.

Operation_done

This transition is active when the mobile operation is over.

Back_to_start_point

This transition is active when the sequence is over or when a stop
request is ordered.

Return_to_start_point

The start point is defined at the target position.

Disable_Lexium

The Lexium 05 drive is disabled.

Lexium_disabled

This transition is valid when the Lexium is disabled.

Note: You can see all the steps and actions and transitions of your SFC by clicking

B

on = infront of the name of your SFC section.

196

35013944 01 November 2007

Application using Unity Pro

Creating a Program in LD for Application Execution

At aglance This section executes the mobile action delay time and resets the positioning start
bit New_Set poi nt .

Illustration of the The section below is part of the MAST task. It has no condition defined for it so is

Application permanently executed:
Section FBI_1
TON Delay time to simulate the mobile
_len ENOL— action at the target position.
Mobile_action.x Oper?tion_Done
| IN Q ()
Action_Time — PT ET — Ready_for_stop
{s)
\"/
Management of Lexium 05 control bit.
Target_reached New_Setpoint
| (R
—7| (F)
Description of e The first line is used to simulate the action time once the mobile is at the target
the Application position. When the Mobi | e_Act i on step is active, a TON timer is triggered.
Section When the PT time is reached, the TON output switches to ‘1’, validate the

transition variable Qper at i on_done and set the Ready_f or _st op variable.
e The second line resets the variable New_Set poi nt on the Tar get _r eached
positive transition.

35013944 01 November 2007

197

Application using Unity Pro

Procedure for The table below describes the procedure for creating part of the Application
Creating an LD section.
Section Step Action

1 In Proj ect Browser\ Program Tasks, double-click on MAST.

2 Right click on Sect i on then select New sect i on. Name this section

Application, then select the language type LD.
The edit window opens.

3
To create the contact Action_Mobile.x, click on 1 F then place it in the editor.
Double-click on this contact then enter the name of the step with the suffix ".x"
at the end (signifying a step of an SFC section).
Confirm with OK.

4 To use the TON block you must instantiate it. Right click in the editor then click

onData Sel ecti onandon D . Click onthe Functi on and Function
Bl ock Types tab. Click on Li bset, select the TON block in the list then
confirm with OK and position your block.

To link the Action_Mobile.x contact to the Input of the TON function block, align

the contact and the input horizontally, click on #--* and position the link
between the contact and the input.

Note: For more information on creating an LD section, see Unity Pro online help
(click on ?, then Uni ty, then Uni ty Pro, then Oper at e nodes, then
Pr ogrami ng and LD edi t or).

198 35013944 01 November 2007

Application using Unity Pro

Creating a Program in LD for the operator screen animation

At aglance This section animates the operator screen.

Illustration of the The section below is part of the MAST task. It has no condition defined for it so is
Operator_Screen permanently executed:

_An'.mat'on Operator screen animation.
section
Init.x Mobile_at_Start_Position
| ()
1 | ()
Lexium_Configuration.x
—— COMPARE —— Mobile_at_Position_B
Sequence_Number=1 <)
Mobile_Action.x COMPARE —— Mobile_at_Pgsiﬂon_A
I Sequence_Number=2 (]
COMPARE — Mobile_at_Position_C
Sequence_Number=3 ()
Management of the warning message
on the operator screen.
Return_to_Start_Point.x
|
= |
- Mobile_in_Progress
Move_to_Next_Position.x
| ()
| \J/
Procedure for For creating a LD section, see Procedure for Creating an LD Section, p. 198
Creating an LD
Section

35013944 01 November 2007 199

Application using Unity Pro

Creating a program in ST for the Lexium configuration

At a glance

Programming

This section executes the different steps of the Lexium configuration. This section
is only active when the step Lexi um_Conf i gur ati on is reached in the grafcet
(see lllustration of the Move_Sequence section, p. 195)

The programming structure is as follow:

structure —

Step Step description

number

0 Starting command of the Lexium.

10 If the Lexium is in Run State, then it switch in Homing mode using a
WRITE_VAR function.

20 If the result of WRITE_VAR is conclusive then go to step 30.

30 Homing method definition using a WRITE_VAR function. For more information
about the reference movement method, please refer to the Lexium user
manual).

40 If the result of WRITE_VAR is conclusive then go to step 50.

50 Starting of the Homing method.

60 The Homing is done.

70 The Lexium switches in Positionning Mode using a WRITE_VAR function.

80 If the result of WRITE_VAR is conclusive then the Lexium configuration is done.

Note: For a correct variable declaration, click on Tools/Project Settings/

Language extension then check "Directly represented array variables" and "Allow

dynamic arrays".

—Data types

I~ Allow usage of EBOOL edge

[Allow INT / DINT in place of ANY_BIT

[Allow bit extraction of INT & WORD

[~ Directly represented array variables

v Allow dynamic arrays
[ANY_ARRAY_XXX]

I~ Directly represented array variables

200 35013944 01 November 2007

Application using Unity Pro

ST Program The example is programmed in ST structured litteral language. The dedicated
section is under the same master task (MAST).

CASE Lexi um Config_Step OF
0: (* Lexiumis in "Ready to switch on" position *)
I F (Lexium st atusword.0) THEN
Lexi um control word: =Lexi um oper ati on_enabl e;
Lexi um Config_Step := 10;
END | F;

10: (* Lexiumis in "Run" position *)

I F (Lexium statusword.2) THEN (* Operating node: Homi ng *)
i ndex_subi ndex: =16#00006060 (*CANopen paranmeter address*)
9%W200: =6; (*Definition of the Lexium Function: Hom ng*)
OMNLE62: =5; (*Time out 500ns*)
9%WWL63: =1; (*Length 1 byte*)

VRl TE_VAR(ADDM ‘ 0. 0. 2. 55"), SDO , i ndex_subi ndex, 0, %\200: 1,
9%W\L60: 4) ;

Lexi um Confi g_St ep: =20;
END_I F;

20: (* Test WRITE VAR function result *)
I'F (NOT 9%W\60.0) THEN (* test activity bit*)
IF (9%W\W61=0) THEN (* correct exchange*)
Lexi um Config_Step := 30;
END_I F;
END_| F;

30: (* Homing method: set dinensions *)
i ndex_subi ndex: =16#00006098
9%WL50: =35; (*Definition of Hom ng nmethod*)
9%W52: =5; (*Time out 500ns*)
%W253: =1; (*Length 1 byte*)

WRI TE_VAR(ADDM * 0. 0. 2. 55"), SDO , i ndex_subi ndex, 0, %W\50: 1,
WMR50: 4) ;

35013944 01 November 2007 201

Application using Unity Pro

Lexi um Confi g_St ep: =40;

40: (* Test WRITE_VAR function result *)
| F (NOT 9%W\250.0) THEN (* test activity bit*)
| F (9%W251=0) THEN (* correct exchange*)
New_Set poi nt : =0;
Lexi um Config_Step := 50;
END | F;
END | F;
50: (* Trigger homing *)
New_Set poi nt : =1;
Lexi um Confi g_St ep: =60;
60: (* Homi ng done *)
| F (Target _Reached) AND (Homi ng_Done) THEN
New_Set poi nt : =0;
Lexi um _Confi g_Step: =70;
END | F;
70: (* Operating node: Positionnig *)
i ndex_subi ndex: =16#00006060
9MM50: =1; (*Definition of Positionning method*)
9%WB52: =5; (*Ti me out 500mns*)
9%WMB53: =1; (*Length 1 byte*)

VRl TE_VAR(ADDM * 0. 0. 2. 55"), SDO , i ndex_subi ndex, 0, %AM50: 1,
YMAB50: 4) ;

Lexi um Confi g_St ep: =80;

80: (* Test WRITE_VAR function result *)
| F (NOT 9%WB50.0) THEN (* test activity bit*)
| F (9%WWB51=0) THEN (* correct exchange*)
Configuration_Done := 1;
END | F;
END | F;
END_CASE;

202 35013944 01 November 2007

Application using Unity Pro

Creating an Animation Table

At aglance

Procedure for
Creating an
Animation Table

An animation table is used to monitor the values of variables, and modify and/or
force these values. Only those variables declared in Var i abl es & FB i nst ances
can be added to the animation table

Note: Note: For more information, consult the Unity Pro online help (click ?, then
Uni ty, then Unity Pro,then Operate nodes, then Debuggi ng and

adj ust ment then Vi ewi ng and adj usting vari abl es and Ani mati on

t abl es).

The table below shows the procedure for creating an animation table.

Step Action

1 Inthe Pr oj ect br owser,rightclick on Ani mati on t abl es then click on New
Ani mati on Tabl e.
The edit window opens.

g cicon st el =]
Click on first cell in the Name column, then on the _** button, and add the
variables you require.

35013944 01 November 2007

203

Application using Unity Pro

Animation Table The following screen shows the animation table used by the application:
Created for the

Application
Ems | -
Name v | Value Type w | Comment

«««««««« O IEES e
-.4) Mobile_at_position B BOOL
@ Mobile_at_position_C BOOL
ffffffff © Mobile_at_Start_Position BOOL
@ Run BOOL
- Stop BOOL
«««««««« ® New_Setpoint BOOL
,,,,,,,, @ Target_Reached BOOL
««««««««« @ Lexium.Target_position DINT
| @ Lexium.Position_actual_value DINT
««««««««« @ Lexium.controlword INT
@ Lexium. Statusword INT
,,,,,,,, @ BusMaster.COMM_STS INT
««««««««« @ BusMaster CAN_STS INT
-4 BusMaster.EVT_STS INT
««««««« »

For more information about the creation of the Lexium and the BusMaster objects,
see Declaration of I/O objects, p. 186

Note: The animation table is dynamic only in online mode (display of variable
values)

Note: COMM_STS, CAN_STS and EVT_STS words are used to check the
application good operating. For more information, consult the CANopen user
manual.

Note: To fill the animation table quickly, select several variables by maintaining the
Cont r ol button.

204 35013944 01 November 2007

Application using Unity Pro

Creating the Operator Screen

At aglance

The operator screen is used to animate graphic objects that symbolize the
application. These objects can belong to the Unity Pro library, or can be created
using the graphic editor.

Note: For more information, see Unity Pro online help (click on ?, then Uni t y, then
Unity Pro,then Qper at e nodes, and Operat or screens).

35013944 01 November 2007

205

Application using Unity Pro

lllustration of the The following illustration shows the application operator screen:
Operator Screen

1 ——— > Start Sequence Stop Sequence

/Eim Pogition A Positiop B Positign C
2
<]
7 \ \
3 4 5

The associated variables are presented in the table below:

N° Description Associated variable

1 Start button Run

2 Start point light indicator Mobile_At_Start_Position
3 "Position" A light indicator Mobile_At_Position_A

4 "Position B" light indicator Mobile_At_Position_B

5 "Position C" light indicator Mobile_At_Position_C

6 "Mobile in progress" light indicator Mobile_in_Progress

7 Stop button Stop

206 35013944 01 November 2007

Application using Unity Pro

Procedure for
Creating an
Operator Screen

Note: To animate objects in online mode, you must click on m . By clicking on this
button, you can validate what is written.

The table below shows the procedure for creating the Start button.

Step Action

1 Inthe Pr oj ect browser,rightclick on Oper at or scr eens and click on New
screen.

The operator screen editor appears.

2 Click on the g and position the new button on the operator screen. Double click
on the button and in the Cont r ol tab, select the Run variable by clicking the
button J and confirm with OK. Then, enter the button name in the text zone.

The table below shows the procedure for inserting and animating indicator light.

Step Action

1 In the Tools menu, select Oper at or screens Li brary. Double click on
Di spl ay unit thenl ndi cator |ight. Selectthe dynamic green light from
the runtime screen and Copy (Ctrl+C) then Paste (Ctrl+V) it into the drawing in
the operator screen editor.

2
The light is now in your operator screen. Select your light then click on E
Press enter and the object properties window opens. Select the Ani mat i on tab
and enter the concerned variable, by clicking on J (in the place of %MW1.0).
Click on %] and enter the same variable.

3 Confirm with apply and OK.

35013944 01 November 2007

207

Application using Unity Pro

208 35013944 01 November 2007

Starting the Application

12

Execution of Application in Standard Mode

At aglance

Assignment of
variables

To work in standard mode, you need to associate defined variables to PDO
addresses of the equipment declared on CANopen Bus.

Note: For more information on addressing, see Unity Pro online help (click on ?,
then Uni ty, then Uni ty Pro, then Languages reference, then Dat a
descriptionandData instances

The table below shows the procedure for direct addressing of variables:

Step Action
1 Inthe Proj ect browser and in Variables & FB instances, double-click on
El ement ary vari abl es.
2 In the Address column, enter the address associated with the variable in the
form \Bus.Node\Rack.Module.Channel.Data.
® New_SetPoint BOOL %QW\3.1\0.0.0.25.4
3 Repeat the same procedure for all located variables.

35013944 01 November 2007

209

Starting the application

lllustration of The following screen shows the application variables assignment:
ass_lgned | Data Editor Il
variables Variables | DDT types | Function blocks | DFB fypes |
Filter
(W[veme [VEDT [DOT [10DDT |
Name [Type w [Address w | Value | Comment w
=] Action_Time TIME t#3s
A Configuration_Done sooL. | | |
2 Homing_Done BOOL
| @ index_subindex DINT
@ Lexium_Enable INT 55
.4y Lexium_operation_enable INT 15
-(g) Mobile_at_Position_A BOOL %IW\3.210.0.0.167.7
) Mobile_at_Position_B BOOL %IW\3.210.0.0.167.6
) Mobile_at_Position_C BOOL %IW\3.210.0.0.167.5
~-@@) Mobile_at_Start_Position BOOL %IW\3.2\0.0.0.167.4
) Mobile_In_Progress BOOL
..qQ) New_SetPoint BOOL %QW\3.110.0.0.25.4
Operation_Done BOOL
Position_A DINT 1000
Position_B DINT 2000
Position_C DINT 4000
Run BOOL
Sequence_Number INT
Start_Configuration EBOOL
Stop BOOL
Target Reached BOOL %IW\3.1\0.0.0.16.10
Description of e The first four Boolean variables are assigned to the four discrete inputs of the
variables STB DDI 3420 module.
assignment. e New_ Set poi nt is assigned to the Lexium 05 control bit. A positive transition of

this bit triggers a new positioning.
e Tar get _Reached is assigned to the Lexium 05 status bit which is setto ‘1’ when
the target is reached.

210 35013944 01 November 2007

Starting the application

CANopen bus The CANopen bus is connected as follow:
wirin
g BMX P34 2010 AdvantysSTB

Note: The Lexium 05 is at the end of the CANopen Bus. Set the Ter m nati ng
resi stor CANswitchto ‘1.

35013944 01 November 2007 211

Starting the application

BMX P34 2010
Terminal block
(SUB-D9 Male)

The assignment of the pins connectors is as follow:

STB

Terminal block
(SUB-D9 Male)

697899

@ 1.203 4.5.

@

BMX P34 2010
Terminal block
(SUB-D9 Male)

Lexium 05
Terminal block

© le’6° 0’0
50'0%0%

@

I
R S 41 22) G G 6

BMX P34 2010 terminal block description:

Pin number Symbol Description

1 - Reserved

2 CAN_L CAN_L bus line (Low)

3 CAN_GND CAN ground

4 - Reserved

5 Reserved Optional CAN protection

6 (GND) Optional ground

7 CAN_H CAN_H bus line (High)

8 - Reserved

9 Reserved CAN external positive supply (optionnal)

212

35013944 01 November 2007

Starting the application

STB terminal block description:

Pin number | Symbol Description

1 - Reserved

2 CAN_L CAN_L bus line (Low)

3 CAN_GND CAN ground

4 - Reserved

5 (CAN_SHLD) | Optional CAN protection
6 (GND) Optional ground

7 CAN_H CAN_H bus line (High)
8 - Reserved

9 - Reserved

Lexium 05 terminal block description:

Pin number | Symbol Description
21 CAN_GND CAN ground
22 CAN_L CAN_L bus line (Low)
23 CAN_H CAN_H bus line (High)

35013944 01 November 2007

213

Starting the application

Advantys STB
configuration

The table below shows the procedure for configuring the Lexium 05:

Step Action

1 Shut down the STB.

2 Using the rotary switches (located on the front of the CANopen NIM), configure
the baud rate. The rotary switches are positionned as followed
(5 =500 kbits/s):

Start up then shut down the STB.

4 Using the rotary switches, configure the address of the STB. For example, is
the node number of the equiment is ‘54’, the rotary switches are positionned as
followed:

03
3
4
5
6
9 g 7
TENS
0 1
2
3
4
5
6
9 g 7
ONES

5 Start up the STB and press the reset button located on the STB NCO module
during for 5 seconds.

6 The STB is configured automatically.

214

35013944 01 November 2007

Starting the application

Lexium The table below shows the procedure for configuring the Lexium 05:
configuration Step Action

1 Start up the Lexium 05. RDY is displayed on ther interface.

2 Press Ent er

3 Press the down arrow key until COM is displayed. Then press Ent er .

4 Press the down arrow key until CoAD (CANopen Address) is displayed. Then

press Enter.

(&)]

Using the arrow keys, configure the node number. Then press Esc.

Press the down arrow key until CoBD (CANopen Baud Rate) is displayed. Then
press Enter.

Using the arrow keys, configure the baud rate (500). Then press Esc.

Press the Esc until RDY displayed.

35013944 01 November 2007 215

Starting the application

216 35013944 01 November 2007

Appendices

At aglance

Overview

What's in this
Appendix?

These appendices contain information that should be useful for programming the

application.

The appendix contains the following chapters:

Chapter Chapter Name Page
A CANopen Master local object dictionary entry 219
B Relation between PDOs and STB variables 235
C Actions and transitions 239

35013944 01 November 2007

217

Appendices

218 35013944 01 November 2007

CANopen Master local object
dictionary entry

A

At aglance

Subject of this
chapter

What's in this
Chapter?

This chapter contains the local object dictionary entry for CANopen Master.

This chapter contains the following topics:

Topic Page

Object Dictionary entries according Profile DS301 220
Object Dictionary entries according Profile DS302 225
Midrange Manufacturer Specific Object Dictionary Entries 227

35013944 01 November 2007

219

CANopen Master object dictionary

Object Dictionary entries according Profile DS301

Object The table below presents the object dictionary entries according profile DS301.
Dictionary
entries
Index Sub-index Description Object type |Datatype Comments
(Hex)
1000 Device Type VAR Unsigned32 0x000F 0191
1001 Error Register VAR Unsigned8
1005 COB-ID SYNC VAR Unsigned32
1006 Communication Cycle Period VAR Unsigned32
1007 Synchronous Window Length VAR Unsigned32
1008 Manufacturer Device Name VAR String BMX CPU 20x0
1009 Manufacturer Hardware Version VAR String MIDRANGE BASIC
100A Manufacturer Sofware Version VAR String COMM_FW_01_xx
1012 COB-ID Time Stamp Message VAR Unsigned32
1016 Consumer Heartbeat Time ARRAY
0 Number of entries : 64 Unsigned8
1 Consumer Heartbeat Time Unsigned32
Unsigned32
64 Unsigned32
1017 Producer Heartbeat Time VAR Unsigned16
1018 Identity Object RECORD
0 Number of entries Unsigned8 4
1 Vendor ID Unsigned32 0x0600 005A
2 Product Code Unsigned32 0x3300 FFFF
3 Revision Number Unsigned32 OXyYyyy XXXX
4 Serial Number Unsigned32 0x0
Unsigned32
1020 Verify Configuration ARRAY
0 Number of entries : 2 Unsigned8
Configuration date Unsigned32
2 Contiguration time Unsigned32
1200 1. Server SDO RECORD
0 Number of entries Unsigned8

220

35013944 01 November 2007

CANopen Master object dictionary

Index Sub-index Description Object type | Datatype Comments
(Hex)
COB-ID Client -> Server (Rx) Unsigned32 600H + Node-ID
2 COB-ID Server -> Client (Tx) Unsigned32 580H + Node-ID
1280 1. Client SDO RECORD
0 Number of entries Unsigned8
1 COB-ID Client -> Server (Rx) Unsigned32
2 COB-ID Server -> Client (Tx) Unsigned32
3 Node-ID of the Server SDO Unsigned8
1281 2. Client SDO RECORD
0 Number of entries Unsigned8
1 COB-ID Client -> Server (Rx) Unsigned32
2 COB-ID Server -> Client (Tx) Unsigned32
3 Node-ID of the Server SDO Unsigned8
1282 3. Client SDO RECORD
0 Number of entries Unsigned8
1 COB-ID Client -> Server (Rx) Unsigned32
2 COB-ID Server -> Client (Tx) Unsigned32
3 Node-ID of the Server SDO Unsigned8
1400 1. Receive PDO RECORD
0 Largest sub-index supported Unsigned8
1 COB-ID used by PDO Unsigned32
2 Transmission type Unsigned8
3 Unsigned16
4 Unsigned8
5 Event timer Unsigned16
1401 2. Receive PDO RECORD
0 Largest sub-index supported Unsigned8
1 COB-ID used by PDO Unsigned32
2 Transmission type Unsigned8
3 Unsigned16
4 Unsigned8
5 Event timer Unsigned16
14FF 256. Receive PDO RECORD
0 Largest sub-index supported Unsigned8

35013944 01 November 2007

221

CANopen Master object dictionary

Index Sub-index Description Object type | Datatype Comments
(Hex)
1 COB-ID used by PDO Unsigned32
2 Transmission type Unsigned8
3 Unsigned16
4 Unsigned8
5 Event timer Unsigned16
1600 1. Receive PDO Mapping
0 Number of mapped application Unsigned8 Depends on PDO
objects in PDO mapping of the
application
1 PDO mapping for the 1. Application Unsigned32 Index (16 bit) | Sub-
object to be mapped index (8 bit) | length
(8 bit)
2 PDO mapping for the 2. Application Unsigned32
object
8 PDO mapping for the 8. Application Unsigned32
object
1601 2. Receive PDO Mapping
0 Number of mapped application Unsigned8 Depends on PDO
objects in PDO mapping of the
application
1 PDO mapping for the 1. Application Unsigned32 Index (16 bit) | Sub-
object to be mapped index (8 bit) | length
(8 bit)
2 PDO mapping for the 2. Application Unsigned32
object
8 PDO mapping for the 8. Application Unsigned32
object
16FF 256. Receive PDO Mapping
0 Number of mapped application Unsigned8 Depends on PDO
objects in PDO mapping of the
application
1 PDO mapping for the 1. Application Unsigned32 Index (16 bit) | Sub-
object to be mapped index (8 bit) | length
(8 bit)

222

35013944 01 November 2007

CANopen Master object dictionary

Index Sub-index Description Object type | Datatype Comments
(Hex)
2 PDO mapping for the 2. Application Unsigned32
object
8 PDO mapping for the 8. Application Unsigned32
object
1800 1. Transmit PDO RECORD
0 Largest sub-index supported Unsigned8
1 COB-ID used by PDO Unsigned32
2 Transmission type Unsigned8
3 Inhibit time Unsigned16
4 Reserved Unsigned8
5 Event timer Unsigned16
1801 2. Transmit PDO RECORD
0 Largest sub-index supported Unsigned8
1 COB-ID used by PDO Unsigned32
2 Transmission type Unsigned8
3 Inhibit time Unsigned16
4 Reserved Unsigned8
5 Event timer Unsigned16
18FF 256. Transmit PDO RECORD
0 Largest sub-index supported Unsigned8
1 COB-ID used by PDO Unsigned32
2 Transmission type Unsigned8
3 Inhibit time Unsigned16
4 Reserved Unsigned8
5 Event timer Unsigned16
1A00 1. Transmit PDO Mapping
0 Number of mapped application Unsigned8 Depends on PDO
objects in PDO mapping of the
application
1 PDO mapping for the 1. Application Unsigned32 Index (16 bit) | Sub-
object to be mapped index (8 bit) | length
(8 bit)

35013944 01 November 2007

223

CANopen Master object dictionary

Index Sub-index Description Object type | Datatype Comments
(Hex)
2 PDO mapping for the 2. Application Unsigned32
object
8 PDO mapping for the 8. Application Unsigned32
object
1A01 2. Transmit PDO Mapping
0 Number of mapped application Unsigned8 Depends on PDO
objects in PDO mapping of the
application
1 PDO mapping for the 1. Application Unsigned32 Index (16 bit) | Sub-
object to be mapped index (8 bit) | length
(8 bit)
2 PDO mapping for the 2. Application Unsigned32
object
8 PDO mapping for the 8. Application Unsigned32
object
1AFF 256. Transmit PDO Mapping
0 Number of mapped application Unsigned8 Depends on PDO
objects in PDO mapping of the
application
1 PDO mapping for the 1. Application Unsigned32 Index (16 bit) | Sub-
object to be mapped index (8 bit) | length
(8 bit)
2 PDO mapping for the 2. Application Unsigned32
object
8 PDO mapping for the 8. Application Unsigned32
object

224

35013944 01 November 2007

CANopen Master object dictionary

Object Dictionary entries according Profile DS302

Object The table below presents the object dictionary entries according profile DS302.
Dictionary
entries
Index Sub- Description Object type | Datatype Comments
(Hex) index
1F22 Concise DCF ARRAY
0 Number of entries VAR Unsigned8
Device with Node-ID 1 VAR DOMAIN
127 Device with Node-ID 127 DOMAIN
1F26 Expected Configuration Date ARRAY
0 Number of entries Unsigned8
Device with Node-ID 1 Unsigned32
127 Device with Node-ID 127 Unsigned32
1F27 Expected Configuration Time ARRAY
Number of entries Unsigned8
Device with Node-ID 1 Unsigned32
127 Device with Node-ID 127 Unsigned32
1F80 NMT Startup VAR Unsigned32
1F81 Slave Assignment ARRAY
0 Number of entries Unsigned8
Device with Node-ID 1 Unsigned32
127 Device with Node-ID 127 Unsigned32
1F82 Request NMT ARRAY
0 Number of entries Unsigned8
Request NMT for Node-ID 1 Unsigned8
128 Request NMT for all Nodes Unsigned8
1F84 Device Type Identification ARRAY
0 Number of entries Unsigned8

35013944 01 November 2007

225

CANopen Master object dictionary

Index Sub- Description Object type |Datatype Comments
(Hex) index
1 Device with Node-ID 1 Unsigned32
127 Device with Node-ID 127 Unsigned32
1F85 Vendor Identification ARRAY
0 Number of entries Unsigned8
Device with Node-ID 1 Unsigned32
127 Device with Node-ID 127 Unsigned32
1F86 Product Code ARRAY
0 Number of entries Unsigned8
Device with Node-ID 1 Unsigned32
127 Device with Node-ID 127 Unsigned32
1F87 Revision Number ARRAY
0 Number of entries Unsigned8
Device with Node-ID 1 Unsigned32
127 Device with Node-ID 127 Unsigned32

226

35013944 01 November 2007

CANopen Master object dictionary

Midrange Manufacturer Specific Object Dictionary Entries

Project Data

The table below presents the Object Entry 2010 (Project Data).

Index Sub- Description Object type | Datatype Comments
(Hex) index
2010 Project Data RECORD
0 Number of entries Unsigned8
Current byte length Unsigned16 Read only access
Updated by the Master
Manager
2 Project data domain DOMAIN

CANopen Master
Timing Control

The table below presents the Object Entry 2100 (CANopen Master Timing Control).

queue accesses during one cycle
(SDOs, Heartbeat/Guarding)

Index Sub- Description Object type | Datatype Comments
(Hex) index
2100 CANopen Master Timing Control | ARRAY
0 Number of entries Unsigned8
Max. number of TPDOs to transmit Unsigned8
during one cycle
2 Max. number of high priority Unsigned8
receive queue accesses during
one cycle (RPDOs, EMCY)
3 Max. number of low priority receive Unsigned8

35013944 01 November 2007

227

CANopen Master object dictionary

CANopen Master

The table below presents the Object Entry 4100 (CANopen Master Status).

Status
Index Sub- Description Object type |Datatype Comments
(Hex) index
4100 CANopen Master Status ARRAY
0 Number of entries Unsigned8
1 Global_events Unsigned16
2 COMM_state Unsigned8
3 COMM_diagnostic Unsigned8
4 Config_bits Unsigned16
5 LED_control Unsigned16
6 Minimum Cycle Time Unsigned8
7 Maximum Cycle Time Unsigned8
Nd_asg The table below presents the Object Entry 4101 (Nd_asg).
Index Sub- Description Object type | Datatype Comments
(Hex) index
4101 Nd_asg ARRAY
0 Number of entries Unsigned8
1 Nd_asg[0,1,2,3 Unsigned32
2 Nd_asg[4,5,6,7 Unsigned32
3 Nd_asg[8,9,10,11 Unsigned32
4 Nd_asg[12,13,14,15 Unsigned32
Nd_cfg The table below presents the Object Entry 4102 (Nd_cfg).
Index Sub- Description Object type |Datatype Comments
(Hex) index
4102 Nd_cfg ARRAY
0 Number of entries Unsigned8
1 Nd_cfg[0,1,2,3 Unsigned32
2 Nd_cfg[4,5,6,7 Unsigned32
3 Nd_cfg[8,9,10,11 Unsigned32
4 Nd_cfg[12,13,14,15 Unsigned32

228

35013944 01 November 2007

CANopen Master object dictionary

Nd_asf The table below presents the Object Entry 4103 (Nd_asf).
Index Sub- Description Object type | Datatype Comments
(Hex) index
4103 Nd_asf ARRAY
0 Number of entries Unsigned8
1 Nd_asf[0,1,2,3 Unsigned32
2 Nd_asf[4,5,6,7 Unsigned32
3 Nd_asf[8,9,10,11 Unsigned32
4 Nd_asf[12,13,14,15 Unsigned32
Nd_oper The table below presents the Object Entry 4104 (Nd_oper).
Index Sub- Description Object type | Datatype Comments
(Hex) index
4104 Nd_oper ARRAY
0 Number of entries Unsigned8
1 Nd_oper[0,1,2,3 Unsigned32
2 Nd_oper[4,5,6,7 Unsigned32
3 Nd_oper[8,9,10,11 Unsigned32
4 Nd_oper[12,13,14,15 Unsigned32
Nd_stop The table below presents the Object Entry 4105 (Nd_stop).
Index Sub- Description Object type | Datatype Comments
(Hex) index
4105 Nd_stop ARRAY
0 Number of entries Unsigned8
1 Nd_stop[0,1,2,3 Unsigned32
2 Nd_stop[4,5,6,7 Unsigned32
3 Nd_stop[8,9,10,11 Unsigned32
4 Nd_stop[12,13,14,15 Unsigned32

35013944 01 November 2007

229

CANopen Master object dictionary

Nd_preop The table below presents the Object Entry 4106 (Nd_preop).
Index Sub- Description Object type |Datatype Comments
(Hex) index
4106 Nd_preop ARRAY
0 Number of entries Unsigned8
1 Nd_preop[0,1,2,3 Unsigned32
2 Nd_preop[4,5,6,7 Unsigned32
3 Nd_preop[8,9,10,11 Unsigned32
4 Nd_preop[12,13,14,15 Unsigned32
Nd_err The table below presents the Object Entry 4107 (Nd_err).
Index Sub- Description Object type | Datatype Comments
(Hex) index
4107 Nd_err ARRAY
0 Number of entries Unsigned8
1 Nd_err[0,1,2,3 Unsigned32
2 Nd_err[4,5,6,7 Unsigned32
3 Nd_err[8,9,10,11 Unsigned32
4 Nd_err[12,13,14,15 Unsigned32
Node Error The table below presents the Object Entry 4110 (Node Error Count).
Count
Index Sub- Description Object type |Datatype Comments
(Hex) index
4110 Node Error Count ARRAY
0 Number of entries Unsigned8
Number of the received emergency Unsigned8
messages of node number 1
127 Number of the received emergency Unsigned8
messages of node number 127

230

35013944 01 November 2007

CANopen Master object dictionary

Error Code The table below presents the Object Entries 4111 to 4117 (Error Code Specific Error
Specific Error Counters).
Counters

Index Sub- Description Object type | Data type Comments
(Hex) index

4111 Generic_error_count (Code 10xxH) VAR Unsigned8

4112 Device_hardware_error_count (Code 50xxH) VAR Unsigned8

4113 Device_software_error_count (Code 60xxH) VAR Unsigned8

4114 Communication_error_count (Code 81xxH) VAR Unsigned8

4115 Protocol_error_count (Code 82xxH) VAR Unsigned8

4116 External_error_count (Code 90xxH) VAR Unsigned8

4117 Device_specific (Code FFxxH) VAR Unsigned8

Emergency The table below presents the Object Entry 4118 (Emergency History).

History

Index Sub- Description Object type | Data type Comments
(Hex) index

4118 Emergency History ARRAY

Number of entries Unsigned8
Emergency history of node number 1 Domain
127 Emergency history of node number 127 Domain

input Process
Image

The table below presents the Object Entry 4200 (Input Process Image).

Index Sub- Description Object type | Data type Comments
(Hex) index
4200 Input Process Image RECORD
0 Number of entries Unsigned8
Current byte length Unsigned16 Read only access
Updated by the Master Manager

35013944 01 November 2007

231

CANopen Master object dictionary

Output Process

The table below presents the Object Entry 4201 (Output Process Image).

Image
Index Sub- Description Object type | Data type Comments
(Hex) index
4201 Output Process Image RECORD
0 Number of entries Unsigned8
Current byte length Unsigned16 Read only access
Updated by the Master Manager
Additional The table below presents the Object Entry 4205 (Additional Master Information).
Master
Information
Index Sub- Description Object type | Data type Comments
(Hex) index
4205 Additional Master Information RECORD
0 Number of entries Unsigned8 ro
1 Coupler (CPU) type Unsigned8 rw
2 CAN baudrate table index Unsigned8 ro
3 Highest used Node-ID Unsigned8 ro
4 Number of used RxPDOs Unsigned16 ro
5 Number of used TxPDOs Unsigned16 ro
6 Number of mapped objects Pl input Unsigned16 ro
7 Number of mapped objects Pl output Unsigned16 ro
8 Covered bytes by the concise DCF Unsigned8 ro
9 Byte size of the concise DCF buffer Unsigned16 ro
10 Configuration signature Unsigned16 rw
11 Control Unsigned16 rw
Access type : ro (read only), rw (read / write)
232 35013944 01 November 2007

CANopen Master object dictionary

Additional Slave

The table below presents the Object Entry 4250 (Additional Slave Assignment).

Assignment
Index Sub- Description Object type | Data type Comments
(Hex) index
4250 Additional Slave Assignment ARRAY
0 Number of entries Unsigned8
Boot behaviour for Node-ID 1 Unsigned8
127 Boot behaviour for Node-ID 127 Unsigned8

Bit 0 = 0 : Bootup according DS-302
Bit 1 = 1 : Bootup do not overwrite config parameter

35013944 01 November 2007

233

CANopen Master object dictionary

234 35013944 01 November 2007

Relation between PDOs and STB

variables B

STB island configuration

At aglance

Using the COBiId, it's possible to established a link between PDOs and STB
variables.

STB islands can be configured:

e using Advantys Configuration Software (STB NCO 2212),
e using Unity Pro Software (STB NCO 2212 and NCO 1010).

35013944 01 November 2007

235

Relation between PDOs and STB variables

Configuration
using Advantys

Configuration

The procedure for configuring a STB island using Advantys Configuration Software
is as follow. It only concerns the STB NCO 2212 module:

Island
Step Action
1 In Advantys Configuration Software (Version 2.2.0.2 or above), create a new island
2 Select the STBNCO2212 Network Interface Module
3 Select the modules which will be used in the application
4 In the menu click on 1 sl and andon 1/ O i nage overvi ew
Fieldbus Image] Modbus Image]
Input Data A
Object 15 14 13 12 1. 10 9 8 7 6 5 4 3 2 1 0
6100:01 91919191919 (9(9[9(9/9(9(9]9]9
6000:01 202 (2|2 |11 |11]
6000:02 E T 4 4 4 4 3 3 3 3
6000:03 6 6 6 6 5 5 5 5
6000:04 8(8[8|8|7|7|T]|7
6000:05 - - - - 10 10 10 10 10 10 10 10
6000:06 - - - - - -/ - - .10 10 10 10 10 10 10 10
6401:01 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
6401:02 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
2600:00 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
32 32 32 32 32 32 32 32 3232 32 32 32 32 32 32
2601:00 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 323‘
This window represents an 1/0 image overwiev while offline. The variable indexes are the same as for
Unity Pro Software. It allows to find the content of PDO quickly and easily.
5 When the configuration is over, click on File/Export to export the island in DCF format, which will be
imported in Unity Pro.
236 35013944 01 November 2007

Relation between PDOs and STB variables

Configuration The procedure to configure a STB island using Unity Pro Software is as follow:
using Unity Pro
Software
Step Action
1 In the Proj ect browser, double-click on Confi gur ati on then 3: CANopen.
2 In the CANopen window, double-click on the Advantys STB representation. The STB configuration
window opens
3 In Funct i on zone, select Advanced.
Function:
|Advanced v
4 Click on the PDO tab to see the PDO configuration, the variables and their topological addresses.
[F] PDO] E@ Error control] E@ Config]
Transmit (%l) A
— (Import DCF
PDO | Tr.Ty... [inhibi... | Even...| Symbol | Topo. Addr. | %M... | CO... | Index
= N PDO1 255 0 16#182 Variables
Digital 8 .. %IW\3.210.0... | %MW184 6000:01| || Display only umapped variables
(1 Digital 8 .| %IW\3.20.0... | %MW185 6000:02| | Moz meter Name <[nd
Island Diagnostics: ...| 4000:00
Island Diagnostics: I..| 4001:00
Configured Nodes 1... 4002:01
Configured Nodes 3..| 4002:02
Configured Nodes 4... 4002:03
Configured Nodes 6...| 4002:04
Configured Nodes 8... 4002:05
Configured Nodes 9... 4002:06
Receive (%Q) Configured Nodes 1..| 4002:07
— o Configured Nodes 1..| 4002:08
PDO |Tr. Ty... |Inh|b|... |Even...|SymboI| Topo. Addr. | %M. | CO... | Index Optionnal Nodes 1... | 4003:01
= \ PDO 1 255 0 16#202 Optionnal Nodes 3... | 4003:02
Digital 8 .. %QW\3.210.0... %MW559 6200:01 Optionnal Nodes 4... | 4003:03
Optionnal Nodes 6... | 4003:04
Optionnal Nodes 8... | 4003:05
Optionnal Nodes 9... | 4003:06
Optionnal Nodes 1... | 4003:07
Optionnal Nodes 1... | 4003:08
Nodes with Error 16...| 4004:01
Nodes with Error 32...| 4004:02
Nodes with Error 48...| 4004:03
Nodes with Error 64...| 4004:04
Kl |
5 On the right side of the window, there’s the list of STB mapped or unmapped variables. The indexes are
the same as Advantys Configuration Software. Variables can be found quickly and easily.
Drag and drop the variables to the right PDO to configure the STB island.

35013944 01 November 2007

237

Relation between PDOs and STB variables

238 35013944 01 November 2007

Actions and transitions

At aglance

Subject of this
chapter

What's in this
Chapter?

This chapter contains the actions and the transitions used in the grafcet (See
Creating the program in SFC for managing the move sequence, p. 192)

This chapter contains the following topics:

Topic Page
Transitions 240
Actions 241

239

Actions and transitions

Transitions

At a glance The next tasks, written in LD, are used in different transitions of the grafcet.

Back_to_Start_ P The action associated to the Back_to_Start_Point transition is as follows:
oint transition

Stop Back_to_Start_Point
A

I

/

COMPARE
T oequence Nombers ||

The sequence is over.

Lexium_Disable The action associated to the Lexium_Disabled transition is as follows:
d transition

COMPARE Lexium_Disabled
—mm.Statuswordz:O | ()

Test the Lexium 05 state.

240

Actions and transitions

Actions

At aglance

Init step

The next tasks, written in LD and ST are used in different steps of the grafcet.

Note: To use the following actions, in Tool s/ Proj ect Setti ng/ Languages
ext ensi on, select Al | ow dynamic arraysandDirectly represented
array vari abl es options.

The action associated to the Init step is as follows:

Initialization of variables when the start
command is ordered.

Run Stop COMPARE OPERATE Start_configuration
— /H BusMaster.COMM_STS=0 Homing.done:=0; | (>
Test of the communication OPERATE
status —Wmiguraﬂon.done:o;

OPERATE

Sequence_numbem—

241

Actions and transitions

Move_to_Next_P
osition step

Return_to_Start_
Point step

Disable_Lexium

Two actions are associated to the Move_to_Next_Position step.
The first action is as follows:
(* Definition of the target position*)
CASE Sequence_nunber OF
1: Lexi um Target _Position: =Position_B;
2: Lexium Target _Position: =Position_A
3: Lexium Target _Position: =Position_C
END_CASE;
I F (Sequence_nunber<4) AND NOT (Stop) THEN
(* Start the new positionning *)
New_Set Poi nt : =1;
Ready_f or_Stop: =0;
END | F;
The second action is as follows:
(*I'ncrementation before new nove starts*)
I NC(Sequence_Nunber) ;

Note: For the incrementation action, the qualifier must be positionned on P (rising
edge).

The action associated to the Return_to_Start_Point step is as follows:
(*Target Position Loadi ng*)

Lexi um Tar get _Posi ti on: =0;

(*Start a new positioning*)

New_Set poi nt : =1;

The action associated to the Disable_Lexium step is as follows:
(*Lexi um vol t age di sabli ng*)
Lexi um Control wor d: =Lexi um di sabl i ng;

242

Glossary

A

ADVANTYS Schneider CANopen Configuration tool for PLC islands.
B

BOOL Boolean.
C

CAN Controller Area Network : field bus originally developed for automobile applications
and now used in many sectors.

CiA CAN in Automation : international organization of users and manufacturers of CAN
devices.

COB Communication Object: transport unit on CANopen bus. A COB is identified by a
unique identifier, which is coded on 11 bits, [0, 2047]. A COB contains a maximum
of 8 data bytes. The transmission priority of a COB is given by its identifier. The
weaker the identifier, the more the associated COB is priority.

COB-ID COB Identifier : unique identifier of a COB on a CANopen network. The identifier

determines the priority of a COB.

35013944 01 November 2007 243

Glossary

CSDO SDO Client
D
DINT Double integer : 32 bit word.

Discrete Module

Tout Ou Rien.

DS Draft Standard: specifications document created by the CIA organization.
E

EBOOL Boolean with edge detection and forcing possibilities.

EDM Multi-language Electronic Data Sheet : extended version of EDS file. Extensions
include European multilingual support as well as a description of physical character-
istics of a device.

EDS Electronic Data Sheet: Description of a CANopen device profile description
normalized by the DSP306 CiA specification.

EMCY Emergency : A trigger event, generated by an internal error/fault. This object is
transmitted with each new error, since error codes are independent mechanisms.

ETS Empty Terminal Support : Additional information is stored in the PLC application
for uploading.

H
HEALTH bit from 1 : Mode functions correctly

bit from O :

e Bad configuration, or,

e Module configured but absent, or;

e module already configures, but with the same address as an existing module, or
e No Communication

244

35013944 01 November 2007

Glossary

INT Integer : Integer 16 bhit word.
I0DDT Input/Output Derived Data Type
M
Mapping Transformation of data consigned in a special and different format.
N
NIM Network Interface Module : Communication between the device and field bus.
NMT Network Management : This is responsible for managing the execution,
configuration and errors in a CAN network.
P
PDO Process Data Object: object for data exchange between different elements is CAN
open.
PROCESS Part of the system memory where the E/S values are stored from PDO exchanges
IMAGE on the CANopen bus. This section is managed by the CANopen stack.
The inputs are copied in the user application memory at the start of each task cycle
and the outputs at the end of each task cycle.
R
REAL Real number.

35013944 01 November 2007

245

Glossary

RPDO Received PDO
S
SDO Service Data Object: peer to peer communication with access to Dictionary Object
of a CANopen bus element.
SSDO SDO Server
STB Small Terminal Block.
SYNC Synchronisation Object
T
TPDO PDO Transmission
)
UDINT Unsigned double integer : Unsigned double integer
UINT Unsigned integer : Unsigned integer

246

35013944 01 November 2007

Index

l‘\
A\/

A

addressing
topological, 100

B

BMXP342010, 29
BMXP342030, 29
bus lengths, 23

C

CANopen
connectors, 32
channel data structure for all modules
I0DDT, 139
T_GEN_MOD, 163
channel data structure for communication
protocols
T_COM_CO_BMX, 132, 143
T_COM_STS_GEN, 132, 139
COB-ID, 159
configuring, 65
steps of configuration, 62
configuring the devices
STB, 85
Tesys U, 85

configuring the servodrives
ATV31, 85
ATV61, 85
ATVT71, 85
IClA, 85
Lexium 05, 85

D

debugging, 117
diagnosing, 33
diagnostics, 125

E

emergency objects (EMCY), 159
error codes, 159
error control
heartbeat, 79
node guarding, 79
event timer, 100

inhibit time, 100

N

NMT (network management), 79

35013944 01 November 2007

247

Index

P

parameter settings, 132
PDO mapping, 104
PDOs, 100
performances, 63
profile, 16
programming, 99

Q

quick start, 165

R

READ_VAR, 108

S

SDOs, 105
standards, 25

T

T_COM_CO_BMX, 143
T_COM_CPP110, 133
T_COM_STS_GEN, 132, 133, 139
T_GEN_MOD, 163

transmission speeds, 23
transmission type, 100

wW

WRITE_VAR, 108

248 35013944 01 November 2007

	Modicon M340 with Unity�Pro
	Table of Contents
	Safety Information
	About the Book

	Overview of CANopen Communication
	Overview of CANopen Communication
	CANopen Hardware Implementation
	Hardware Implementation of BMX�P34 Processors
	Presentation of CANopen devices
	Software Implementation of CANopen Communication
	Generalities
	Configuration of Communication on the CANopen Bus
	General Points
	Bus Configuration
	Device Configuration
	Master Configuration

	Programming
	Debugging Communication on the CANopen Bus
	Diagnostics
	Language Objects
	Language objects and IODDT for CANopen communication
	Language Objects and Generic IODDT Applicable to All Communication Protocols
	Language Object of the CANopen Specific IODDT
	Emergency objects
	The IODDT Type T_GEN_MOD Applicable to All Modules

	Quick start : example of CANopen implementation
	Description of the application
	Installing the application using Unity Pro
	Presentation of the solution used
	Developping the application

	Starting the Application
	Appendices
	CANopen Master local object dictionary entry
	Relation between PDOs and STB variables
	Actions and transitions
	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

