8.2 Function block libraries

- 1. Each function block is described.
- 2. Before using the function block, please review general description on function block in 3.5.2 and apply the function block libraries to the program for easy programming.

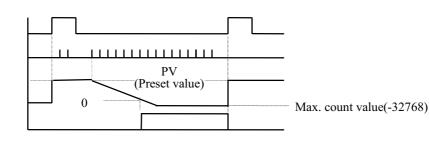
CTD

Down counter	Product	GM1	GM2	GM3	GM4	GM5
	Applicable	•	•	•	•	•

Function	Description
CTD BOOL - CD Q - BOOL BOOL - LD INT - PV CV - INT	Input CD : Down_Count pulse input LD : Load preset value PV : Preset Value Output Q : Count_Down output CV : Current Value

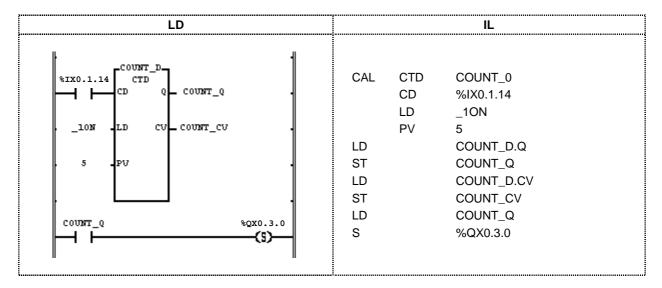
Function

- □ Down counter function block CTD decrease CV by 1 when down counter pulse input CD changes 0 to 1.
- ☐ However, CV is decreased when it is greater than -32768 of minimum INT value and is not decreased when it becomes -32768.
- \square When LD is 1, PV is load to CV.(CV=PV)
- \square Output Q is 1 when CV is less than 0.


Time chart

LD(Preset value input)

CD(Down_Count input)


CV(Current value)

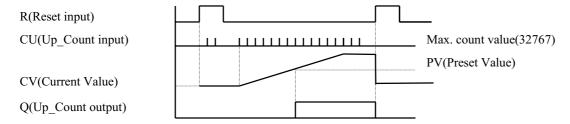
Q(Count Down output)

Program example

Program that set the output contact %QX0.3.0 when 5 pulse inflows to input contact %I0.1.14.

- (1) Register name of CTD function block.(COUNT_D)
- (2) Input the input contact %IX0.1.14, which the pulse input inflows, to CD.
- (3) Input User Flag ON(first scan on) that loads PV to CV.
- (4) Input 5 to PV value within INT range(-32768~32767).
- (5) Input arbitrary output variable(COUNT CV) to CV.
- (6) Input arbitrary output variable(COUNT_Q) to Q.
- (7) After completing the program, execute the compile and write to PLC.
- (8) Execute the mode transit(Stop \rightarrow Run) after completing writing.
- (9) 5 of PV value is load to CV(Count_CV) when the program runs.
- (10) Reduce CV(COUNT_CV) by 1 when input pulse inflows to input contact %I.0.1.14.
- (11) When No.5 pulse inflows to the input contact, CV will be 0 and Q (COUNT_Q) will be 1.
- (12) When Q (COUNT_Q) is 1, output contact %Q0.3.0 is set.

CTU


Up counter(function block)	Product	GM1	GM2	GM3	GM4	GM5
	Applicable	•	•	•	•	•

Function	Description					
CTU BOOL - CU Q - BOOL BOOL - R INT - PV CV - INT	Input Output	CU : Up_Count pulse input R : Reset input PV : Preset Value Q : Up_Count output CV : Current Value				

Function


- □ Up counter function block CTU increase CV by 1 when up counter pulse input CU changes 0 to 1.
- ☐ However, CV is increased when it is less than 32767 of maximum INT value and is not increased when it becomes 32767
- \square When reset input R is 1, CV is cleared(0).
- \square Output Q is 1 when CV is larger than PV.
- ☐ Every time when CTU executed, PV is reloaded into CTU instance memory and CTU uses this value for operation.

Time chart

Program example

Program that set the output contact %QX0.3.1 when 10 pulse inflows to input contact %IX0.1.15.

- (1) Register name of CTU function block.(COUNT_D)
- (2) Input the input contact %I0.1.15, which the pulse input inflows, to CU.
- (3) Input 10 to PV.
- (4) Set arbitrary input contact to R that initializes CV(%I0.1.5).
- (5) Input arbitrary variable(COUNT CV) to CV.
- (6) Input arbitrary output variable(COUNT_Q) to Q.
- (7) After programming, execute the compile and write to PLC.
- (8) Execute the mode transit(Stop \rightarrow Run) after completing writing.
- (9) Current value CV(Count_CV) is increased by 1 when the input pulse inflows to input contact %I0.1.15.
- (10) As current value CV is 10 and same to preset value when No.10 pulse inflows to input contact, the output Q(COUNT_Q) will be 1.
- (11) When Q (COUNT Q) is 1, output contact %Q0.3.0 is set.

CTUD

Up/Down counter(Function block)

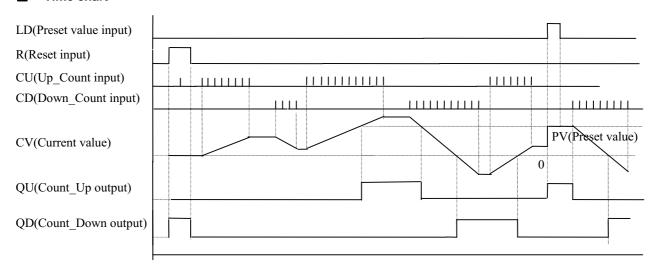
Product	GM1	GM2	GM3	GM4	GM5
Applicable	•	•	•	•	•

F	unction	Description					
BOOL - CU BOOL - R BOOL - LD INT - PV	QD BOOL	Input	CU : Up_Count pulse input CD : Down_Count pulse input R : Reset input LD : Preset Value load PV : Preset Value QU : Count_Up output QD : Count_Down output CV : Current Value				

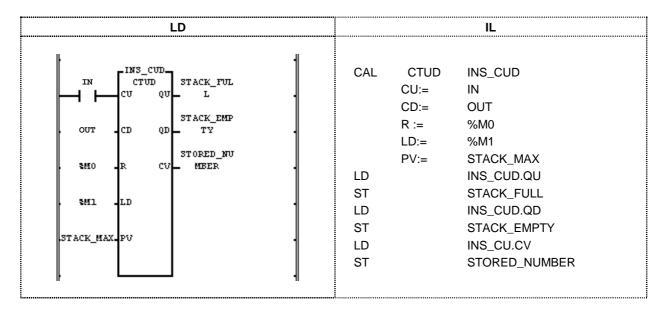
Function

□ Up/Down counter function block CTUD increase CV by 1 when up counter pulse input CU changes 0 to 1 and CV is decreased by 1 when down counter pulse input CD changes 0 to 1.

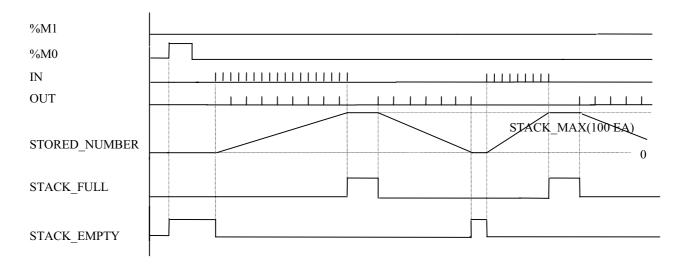
CV is increased or decreased when CV is between minimum value -32768 and maximum value 32767, but CV and reaches minimum or maximum value, CV will not be increased or decreased.


 \square When LD is 1, preset value PV is loaded into current CV(CV=PV).

 \square When R is 1, current value CV is cleared(0)(CV=0).


 \Box Output QU will be 1 when CV is greater than PV and QD will be 1 when CV is less than 0.

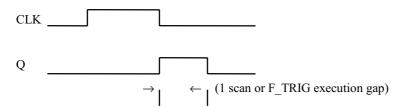
 \square The operation for each input signal is executed in order of R > LD > CU > CD and, if the signal is duplicated, the operation of higher priority is executed.


Time chart

Program example

There is temporary storage stack that have storage capacity 100 (STACK_MAX) and IN signal is 1 whenever the material is loaded into stack and OUT signal is 1 whenever unloaded from stack in the production line. When material is loaded in to stack faster than unloading, STACK_FULL may 1 when STORED_NUMBER reaches 100(STACK_MAX). On the contrary, stack has no materials in it, STACK_EMPTY is 1.

F TRIG


Drop edge detection(Function block)	Product	GM1	GM2	GM3	GM4	GM5
	Applicable	•	•	•	•	•

	Function	Description			
500	F_TRIG	Input	CLK : Input signal		
BOOL -	CLK Q - BOOL	Output	Q : Falling edge detection result		

Function

 F_TRIG outputs 1 to output Q when input to CLK changes from 1 to 0 and output 0 to output Q at next execution. Otherwise, output Q is always 0.

Time chart

Program example

Monitor the status of input variable %I0.0.0 and output 1 to output variable FALL_DETECT when input variable %IX0.0.0 changes from 1 to 0. Output 0 to FALL DETECT.

I HSC

Internal high speed counter (Function Block)	Product	GM1	GM2	GM3	GM4	GM5
	Applicable					•

	Fund	ction			Description
BOOL — BOOL — USINT — USINT — UDINT — USINT — USINT — UDINT — USINT —	I_H REQ RST PO S M ASK PV_1 ST_1 PV_4 ST_4	DONE ERR STG OUT CV	BOOL BOOL USINT USINT UDINT	Input	REQ: Counter operation input RST: Counter reset input POS: Direct output position selection MASK: Output contact selection of the module PV_1: Stage 1 Preset Value ST_1: Stage 1 output (Status) Stage range is from 1 to 4. DONE: Output '1' when final stage is completed ERR: Error display STG: Stage under count OUT: Preset value of counting stage CV: Current value of counting stage

Function

□ 1 phase, 1 point, 32 bit high-speed counter is installed in the main module of GM5. The contact utilizes HSC+ and HSC- of main module terminal. The specification is as below.

Voltage : 10V~24V

Input current : 16mA(24V), 6.7mA(10V)

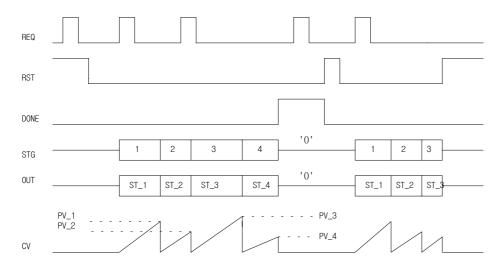
Min. OFF voltage : 2V Count speed : 20K pps

□ REQ : Register the count preset value of each stage to internal counter at the change of input condition from '0' to '1' and the operation continues when REQ is '0' after operating of counter and the counter will not operate again though the input condition changes from '0' to '1'. For the restart, execute RESET and satisfy the REQ condition.

 \square RST : Remove the output in case of '1' and register again the counter value. If RST = '0' and REQ = '0' \rightarrow '1', register the preset value and start the count again.

□ POS : Select the module position to output stage output value directly. In case of %QB0.1.0, digit '1' will be the position number of module. If the contact output section is not at the selected module, ERR will be '1' and FB will not operate. Lower 8 point of assigned module will be used.

□ MASK: Select actual output contact among 8 selected contact by POS. Though 8 output contacts are set by POS, the contact, which MASK selects '1', is used for actual output contact. For example, if POS=0 and MASK=16#0F, actual output contact will be lower 4 point of No. 0 module.


☐ ERR : Display error status of FB.

 \square STG : Display the current counting stage.

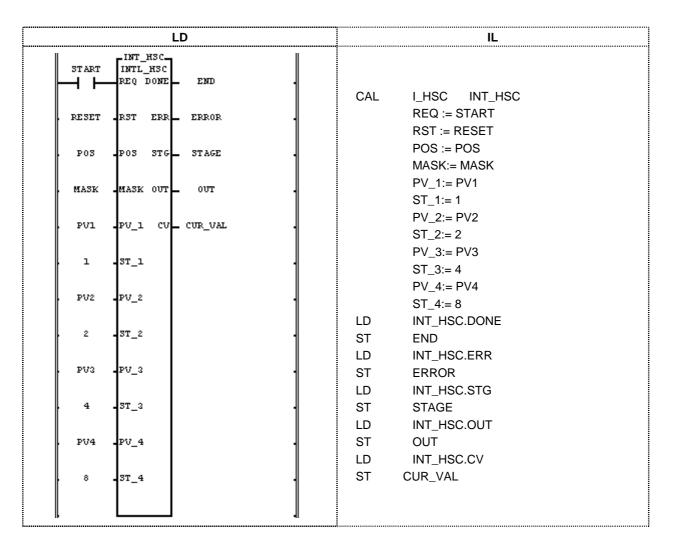
 \Box OUT: Output the selected output value(ST x) of current counting stage.

If REQ condition is satisfied, start the count from 0 and output ST_1 value to OUT till meet the preset value of PV_1. When the count becomes the preset value PV_1, initialize the counter to next preset value(PV_2) and output ST_2 value. After executing last step that PV_x is set over 0, output '1' to DONE and '0' to OUT and wait for the restart condition.

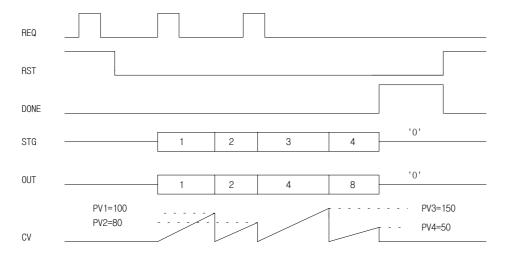
Time chart

Program example

When PV1=100, PV2=80, PV3=150 and PV4=50, '0' valve is on in the district from 0 to PV1 of high-speed counter, '2' valve is on in the district from PV2 to PV3 of high-speed counter and '3' valve is on in the district from PV3 to PV4 of high-speed counter. The output preset value can be used for the input of other function or function block in other program. The program example is the case that the output contact and value is set as below.

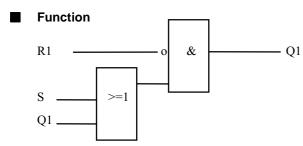

VALVE: %QB0.0.0 => POS = 0

VALVE[0]: %QX0.0.0


VALVE[1]: %QX0.0.1

VALVE[2]: %QX0.0.2 => MASK = 16#0F

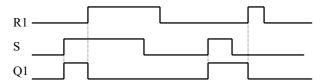
VALVE[3]: %QX0.0.3


The time chart is as below.

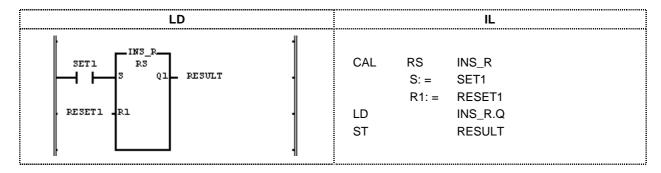
RS

Reset Priority Bistable(Function block)	Product	GM1	GM2	GM3	GM4	GM5
	Applicable	•	•	•	•	•

Function	Description					
RS BOOL - S Q1 - BOOL BOOL - R1	Input R1 : Reset condition S : Set condition Output Q1 : Operation result					



If R1 is 1, the output Q1 shall be always 0 regardless of S.


The output Q1 holds previous status and becomes 1 when R1 is 0 and S is 1.

The initial status of Q1 is 0.

Time chart

Program example

Take RESET1 as Reset condition and SET1 as Set condition and output the result to RESULT.

For the operation result, replace R1 by RESET1 and S by SET1 and Q1 by RESULT in the time chart.

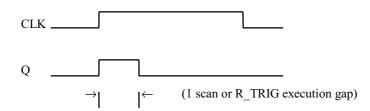
- (1) When the input variable SET1 and RESET1 is on simultaneously, the output variable RESULT will be 1.
- (2) When the input variable RESET1 is on, the output variable RESULT will be 0.
- (3) When the input variable SET1 and RESET1 is on simultaneously, the output variable RESULT will be 0.

GM4

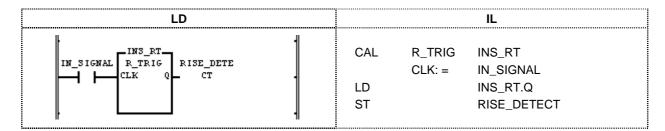
GM5

GM3

R_TRIG


Rising edge detection (Function Block)	Product	GM1	GM2	
	Applicable	•	•	

Function			Description					
		Ī						
	R_TRIG		Input	CLK	: Input clock			
BOOL =	CLK Q	- BOOL	Output	Q	: Rising edge detection result			


Function

 R_TRIG changes output Q to 1 when the input to CLK is changing from 0 to 1 and changes it to 0 at next execution.

Time chart

Program example

(1) Output 1 to RISE_DETECT when IN_SIGNAL is changing from 0 to 1 and 0 to RISE_DETECT during INS_RT execution.

SEMA

Semaphore for system resource control(Function block)

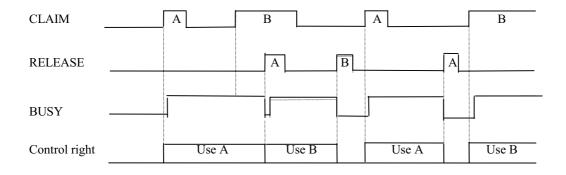
Product	GM1	GM2	GM3	GM4	GM5
Applicable	•	•	•	•	•

Function	Description						
SEMA	Input CLAIM : Resource monopoly request signal RELEASE : Release signal						
BOOL — CLAIM BUSY — BOOL BOOL — RELEASE	Output BUSY : Acquisition disable signal of requested resource(Wait)						

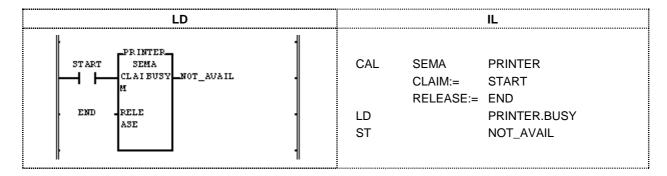
Function

This function block is used to acquire the exclusive control right of the system resource.

During executing SEMA function(CLAIM = 1 or 0, RELEASE = 0), BUSY will be 1 if other program is using the resource. To acquire the control right of resource, operate SEMA with CLAIM = 1 and RELEASE = 0 and wait till BUSY becomes 0. When BUSY becomes 0, control relating resource and execute SEMA once with CLAIM = 0 and RELEASE = 1 after control operation to transfer the control right.

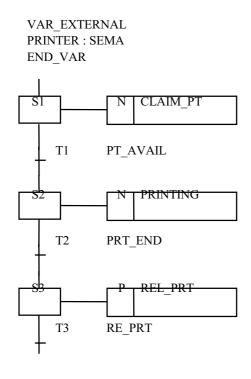

(The transfer of control right by SEMA with CLAIM = 0 and RELEASE = 1 shall be executed in the program that has the control right currently.)

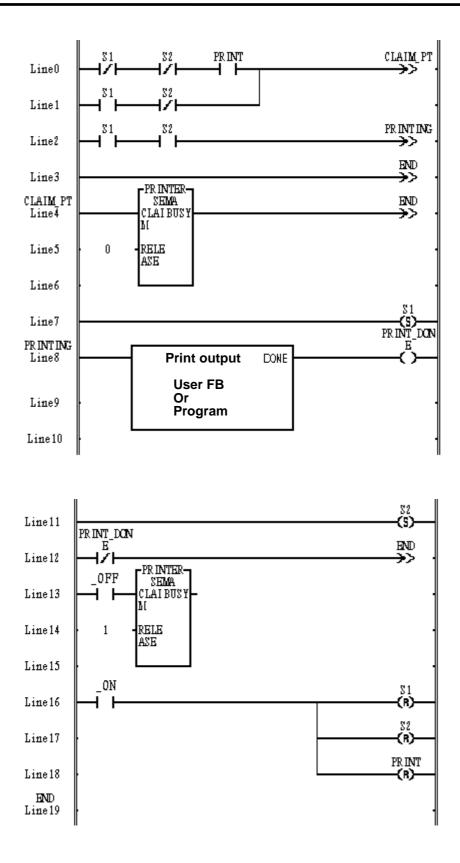
- SEMA's instance shall be set in the global area so that access commonly in the program requiring the resource.
- Each program requiring same resource shall be set by same priority.
- Shall not be used between GM1 multi CPU modules.
- Internal execution structure of SEMA function block


```
\begin{split} VAR & X:BOOL:=0\;; & END\_VAR\\ BUSY:=X\;; & \\ IF & CLAIM & THEN & X:=1\;;\\ ELSIF & RELEASE & THEN & BUSY:=0; X:=0\;;\\ END\_IF & \end{split}
```

■ Time chart

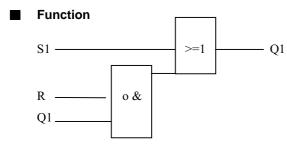
In case of exchanging access right for same resource in program block A and program block B.


Program example

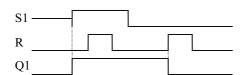

In order to output in different program block by the printer in PLC system, declare the instance 'PRINTER' as global and control the control right of printer by SEMA function block named as 'PRINTER' easily.

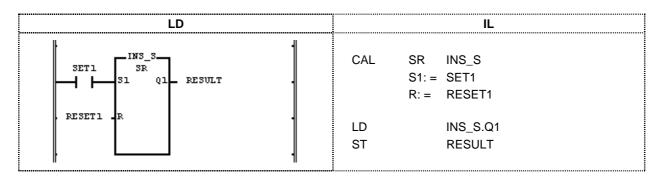
BUSY signal will be 1 and output 1 to NOT_AVAIL if other program block uses the printer at request of control right by 'PRINTER' SEMA when START is 1 and END is 0 at the time of printer output.

If other block does not use the print, BUSY becomes 0 and the program for output the signal to printer shall be operated. After completing the print operation, execute 'PRINTER' SEMA with START = 0 and END = 1 so that other block can take the control right of printer.


S1	CLAIM_PT; Printer control right request
С	CAL SEMA PRINTER CLAIM:= 1 RELEASE:= 0
T1	PT_AVAIL; Printer control right acquisition check
_	DN PRINTER.BUSY T TRANS
S2	PRINTING; Print output
1	rinter control program Vhen completing the print, PRINT_DONE:= 1
T2	PRT_END; Print completion check
	D PRINT_DONE T TRANS
S3	REL_PRT; Printer control right transfer
С	CAL SEMA PRINTER CLAIM:= 0 RELEASE:= 1
T3	RE_PRT; Printer request again
	D PRT_REQ ST TRANS

SR


Set Priority Bistable	Product	GM1	GM2	GM3	GM4	GM5
	Applicable	•	•	•	•	•


Function	Description					
SR BOOL = S1 Q1 = BOOL BOOL = R	Input S1 : Set condition R : Reset condition Output Q1 : Operation result					

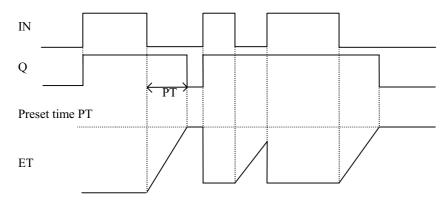
When S1 is 1, output Q1 becomes 1 always regardless of R. Output Q1 holds previous status and becomes 0 when S1 is 0 and R is 1. Initial status of Q1 is 0.

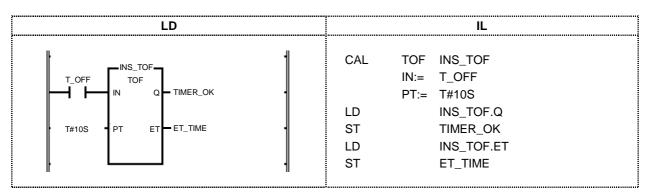
■ Time chart

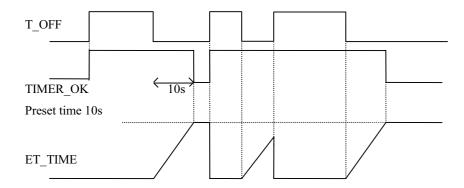
- (1) When the input variable SET1 On, the output variable RESULT will be 1.
- (2) If input variable SET1 is OFF and RESULT1 is On, output variable RESULT will be 0.

TOF

OFF delay timer(Function block)	Product	GM1	GM2	GM3	GM4	GM5
	Applicable	•	•	•	•	•


Function	Description					
TOF	Input IN : Timer operation condition PT : Preset Time					
BOOL - IN Q - BOOL TIME - PT ET - TIME	Output Q : Timer output ET : Elapsed Time					


Function


If IN is 1, Q becomes 1 and Q becomes 0 after elapsed time from IN=0 to preset time by PT. Output the elapsed time to ET after IN becomes 0.

If IN becomes 1 before ET reaches the preset time, the elapsed time return 0.

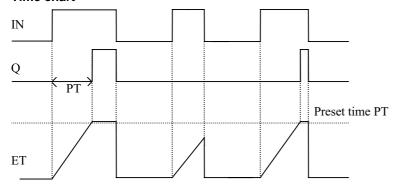
■ Time chart

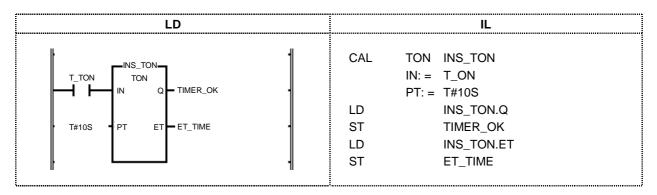
If input variable T_OFF is 1, output variable TIMER_OK outputs 1 and TIMER_OK becomes 0 in ten seconds after T_OFF . If T_OFF becomes 1 in 10 seconds after it is 0, the timer is initialized. The measuring time of timer is output to ET_TIME .

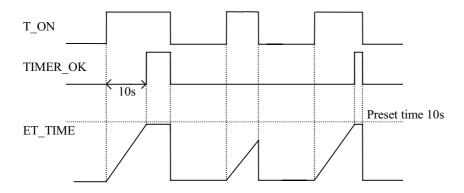
TON

ON delay timer(Function block)	Product	GM1	GM2	GM3	GM4	GM5
	Applicable	•	•	•	•	•

Function	Description					
TON BOOL - IN Q - BOOL TIME - PT ET - TIME	Input IN : Timer operation condition PT : Preset Time Output Q : Timer output					
TIME THE TIME	ET : Elapsed Time					


Function


Output the elapsed time to ET after IN is 1.

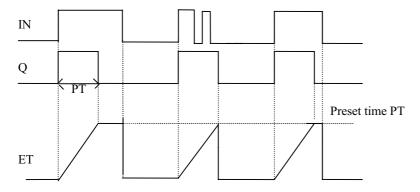

If IN is 0 before ET reaches the preset time, the elapsed time becomes 0.

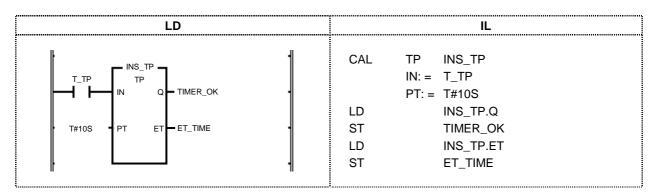
If IN is 0 after Q is 1, Q will be 0.

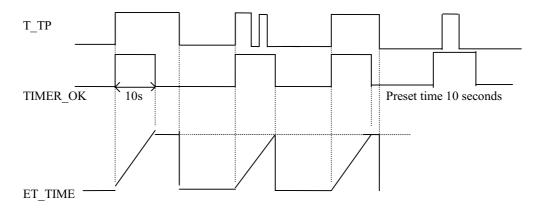
Time chart

- (1) In 10 seconds after input variable T_ON is 1, output variable TIMER_OK is 1.
- (2) After input variable T_ON is 1, the elapsed time is output to output variable ET-TIME.
- (3) If T_ON becomes 0 before ET_TIME reaches the preset time 10 seconds, the elapsed time ET_TIME will be 0.
- (4) If T_ON becomes 0 after TIMER_OK is 1, TIMER_OK becomes 0 and the elapsed time ET_TIME becomes 0.

TP


Pulse timer(Function block)	Product	GM1	GM2	GM3	GM4	GM5
	Applicable	•	•	•	•	•


Function	Description
TP BOOL - IN Q - BOOL TIME - PT ET - TIME	Input IN : Timer operation condition PT : Preset Time Output Q : Timer output ET : Elapsed Time


Function

If IN is 1, Q becomes 1 during preset time and if ET reaches PT, Q becomes 0 automatically. Elapsed time ET is increased when IN is 1 and holds the value when it reaches PT and becomes 0 when IN is 0. It does not matter whether IN is 0 or 1 during increasing ET.

■ Time chart

- (1) After input variable T_TP changes from 0 to 1, TIMER_OK will be 1 during 10 seconds. After driving the timer, the change of T_TP signal is ignored for 10 seconds.
- (2) ET_TIME value stops at T#10S after increasing. When T_TP is 0, ET_TIME becomes